feature: 增加水印去除/高级匿名化算子 (#151)

* feature: 增加水印去除算子

* feature: clean code

* feature: clean code

* feature: 增加高级匿名化算子
This commit is contained in:
hhhhsc701
2025-12-10 18:12:47 +08:00
committed by GitHub
parent cbb146d3d7
commit 19a04df276
15 changed files with 197 additions and 274 deletions

View File

@@ -0,0 +1,4 @@
from datamate.core.base_op import OPERATORS
OPERATORS.register_module(module_name='PiiDetector',
module_path='ops.mapper.pii_ner_detection.process')

View File

@@ -0,0 +1,62 @@
import presidio_analyzer as analyzer
# 中国身份证号识别器
id_recognizer = analyzer.PatternRecognizer(
supported_entity="ID_CHINA",
supported_language="zh",
patterns=[
analyzer.Pattern(
name="china_id_pattern",
regex=r"\b[1-9]\d{5}(19|20)\d{2}(0[1-9]|1[0-2])(0[1-9]|[12]\d|3[01])\d{3}[\dXx]\b|\b[1-9]\d{7}(0[1-9]|1[0-2])(0[1-9]|[12]\d|3[01])\d{3}\b",
score=0.9
)
],
context=["身份证", "身份证明", "身份证号", "证件号码"]
)
# 中国电话号码识别器
phone_recognizer = analyzer.PatternRecognizer(
supported_entity="Phone_CHINA",
supported_language="zh",
patterns=[
analyzer.Pattern(
name="china_mobile_pattern",
regex=r"\b(1[3-9]\d{9})\b",
score=0.85
),
analyzer.Pattern(
name="china_landline_pattern",
regex=r"\b(0\d{2,3}-?\d{7,8})\b",
score=0.8
)
],
context=["电话", "手机", "联系方式", "联系电话"]
)
# 中国邮编识别器
zipcode_recognizer = analyzer.PatternRecognizer(
supported_entity="ZIPCODE_CHINA",
supported_language="zh",
patterns=[
analyzer.Pattern(
name="china_zipcode_pattern",
regex=r"\b[1-9]\d{5}\b",
score=0.7
)
],
context=["邮编", "邮政编码", "邮编号码"]
)
# 兼容中文域名的URL识别器
url_recognizer = analyzer.PatternRecognizer(
supported_entity="URL",
supported_language="zh",
patterns=[
analyzer.Pattern(
name="url_pattern",
regex=r"\b((?:https?://|www\.)[\w-]+\.[\w-]+\S*|(?:https?://|www\.)[\u4e00-\u9fa5]+\.[\u4e00-\u9fa5]+\S*)\b",
score=0.9
)
],
context=["网址", "链接", "网站", "网页"]
)

View File

@@ -0,0 +1,9 @@
name: '高级匿名化'
language: 'Python'
vendor: 'others'
raw_id: 'PiiDetector'
version: '1.0.0'
description: '高级匿名化算子,检测命名实体并匿名化。'
modal: 'text'
inputs: 'text'
outputs: 'text'

View File

@@ -0,0 +1,52 @@
import presidio_analyzer as analyzer
import presidio_anonymizer as anonymizer
import spacy
from datamate.core.base_op import Mapper
from .custom_entities import id_recognizer, phone_recognizer, zipcode_recognizer, url_recognizer
class PiiDetector(Mapper):
custom_ops = True
def __init__(self, *args, **kwargs):
super(PiiDetector, self).__init__(*args, **kwargs)
self.support_language = kwargs.get("support_language", "zh")
self.nlp_engine = None
self.text_analyzer = None
self.anom = None
self.init_model(*args, **kwargs)
def init_model(self, *args, **kwargs):
spacy.load("zh_core_web_sm")
provider = analyzer.nlp_engine.NlpEngineProvider(
nlp_configuration={
"nlp_engine_name": "spacy",
"models": [
{"lang_code": "zh", "model_name": "zh_core_web_sm"}
]
}
)
# 创建NLP Engine
self.nlp_engine = provider.create_engine()
# 初始化AnalyzerEngine
self.text_analyzer = analyzer.AnalyzerEngine(nlp_engine=self.nlp_engine, supported_languages=["zh"])
self.text_analyzer.registry.load_predefined_recognizers()
for recognizer in [id_recognizer, phone_recognizer, zipcode_recognizer, url_recognizer]:
self.text_analyzer.registry.add_recognizer(recognizer)
# 初始化AnonymizerEngine
self.anom = anonymizer.AnonymizerEngine()
def execute(self, sample):
self.read_file_first(sample)
text = sample.get('text')
analyzer_results = self.text_analyzer.analyze(text=text, language=self.support_language)
res = self.anom.anonymize(text=text, analyzer_results=analyzer_results)
sample['text'] = res.text
return sample