init datamate

This commit is contained in:
Dallas98
2025-10-21 23:00:48 +08:00
commit 1c97afed7d
692 changed files with 135442 additions and 0 deletions

View File

@@ -0,0 +1,25 @@
# -*- coding: utf-8 -*-
"""
since:
"""
import sys
from pathlib import Path
from datamate.common.utils.custom_importer import CustomImporter
def _configure_importer():
base_path = Path(__file__).resolve().parent
sys.meta_path.append(CustomImporter(base_path))
_configure_importer()
def _import_operators():
from . import qa_condition_evaluator
from . import text_quality_evaluation
_import_operators()

View File

@@ -0,0 +1,10 @@
# -*- coding: utf-8 -*-
"""
since:
"""
from datamate.core.base_op import OPERATORS
OPERATORS.register_module(module_name='QAConditionEvaluator',
module_path="ops.llms.qa_condition_evaluator.process")

View File

@@ -0,0 +1,16 @@
name: 'QA评估'
name_en: 'QA Assessment'
description: '通过用户维度和相应描述进行QA对评估。'
description_en: 'Perform QA assessment based on the user dimension and corresponding description.'
language: 'python'
vendor: 'huawei'
raw_id: 'QAConditionEvaluator'
version: '1.0.0'
types:
- 'consolidate'
modal: 'text'
effect:
before: ''
after: ''
inputs: 'text'
outputs: 'text'

View File

@@ -0,0 +1,98 @@
# -- encoding: utf-8 --
"""
Description: 基于LLM通过用户设置维度和相应描述进行QA对评估
Create: 2023/11/7 9:26
"""
import json
import re
import time
from pathlib import Path
from typing import List, Dict, Any
from loguru import logger
from datamate.core.base_op import LLM
class QAConditionEvaluator(LLM):
def __init__(self, *args, **kwargs):
super(QAConditionEvaluator, self).__init__(*args, **kwargs)
self.pattern = r'结果[::] ?[YN]'
self.template_path = Path(__file__).parent / "resources/template.txt"
self.examples_path = Path(__file__).parent / "resources/examples.json"
self.task_id = kwargs.get("taskId", "default_id")
self.dimensions = kwargs.get("dimension", [
{
"dimension": "回答是否有针对性",
"description": "回答应对问题中的所有疑问点提供正面、直接的回答,"
"不应引起疑惑。同时,答案不应有任何内容的遗漏,需构成一个完整的陈述。"
},
{
"dimension": "问题是否独立",
"description": "仅分析问题,问题的主体和客体都比较明确,即使有省略,也符合语言习惯。"
"在不需要补充其他信息的情况下不会引起疑惑。"
},
{
"dimension": "语法是否错误",
"description": "问题为疑问句,答案为陈述句; 不存在词语搭配不当的情况;连接词和标点符号不存在错用情况;"
"逻辑混乱的情况不存在;语法结构都正确且完整;"
}
])
self.llm = self.get_llm(*args, **kwargs)
self.prompts = self.build_llm_prompt(*args, **kwargs)
@staticmethod
def _process_examples(dimension_example: List) -> str:
if not dimension_example:
return "\n"
res = "\n以下是一些案例供你参考:"
for single_example in dimension_example:
res += (f"\n问题:{single_example['question']}"
f"\n回答:{single_example['answer']}"
f"\n分析思路:{single_example['evaluate']}"
f"\n结果:{single_example['result']}\n")
return res
def execute(self, sample: Dict[str, Any]) -> Dict[str, Any]:
start = time.time()
qas = json.loads(sample[self.text_key])
single_content_res = []
for qa in qas:
single_qa_res = []
for dimension, prompt in self.prompts.items():
local_result = self._llm_call_parse(qa, prompt, retry=2)
single_qa_res.append({"dimension": dimension, "result": local_result})
qa_response = {"qaId": qa["qaId"], "result": single_qa_res}
single_content_res.append(qa_response)
sample[self.text_key] = "Sucess"
self.save_sample(single_content_res, sample)
cost_time = time.time() - start
logger.info(f"task id: {self.task_id}, method: QAConditionEvaluator costs {cost_time:.6f} s")
return sample
def build_llm_prompt(self, *args, **kwargs) -> Dict:
templates = self.template_path.read_text(encoding="utf-8")
examples_dict = json.loads(self.examples_path.read_text(encoding="utf-8"))
prompts_dict = {}
for dimension in self.dimensions:
name, des = dimension["dimension"], dimension["description"]
dimension_example = self._process_examples(examples_dict.get(name))
dimension_prompt = templates.format(criterion=des, examples=dimension_example, question="{question}",
answer="{answer}")
prompts_dict[name] = dimension_prompt
return prompts_dict
def _llm_call_parse(self, data: Dict, prompt: str, retry: int = 2):
try:
for _ in range(retry):
response = self.llm(prompt.format(question=data["question"], answer=data["answer"]))
result = re.findall(self.pattern, response)
if result:
return "Y" in result[0]
except RuntimeError as e:
logger.error(f"method: QAConditionEvaluator execution error, cause by {e}")
return False

View File

@@ -0,0 +1,36 @@
{
"回答是否有针对性": [
{
"question": "下发 IO 测试的命令格式是什么??",
"answer": "下发 IO 测试的命令格式为:",
"evaluate": "回答正面直接的回答了问题(命令格式是什么),但是答案以冒号结尾并不是完整的陈述,因此结果是N",
"result": "N"
},
{
"question": "HyperCDP的约束关系是什么?",
"answer": "HyperCDP特性和OceanStor Dorado的其他功能之间存在一定的约束关系。",
"evaluate": "回答提及到了HyperCDP特性和OceanStor Dorado的其他功能之间存在约束关系,并未直接回答约束关系是什么,因此结果是N。",
"result": "N"
}
],
"问题是否独立": [
{
"question": "这段文档主要讲述了什么内容?",
"answer": "这段文档主要讲述了在治疗月经失调和怀孕问题时,需要根据患者的具体症状来调整治疗方法。主要方法包括温养肾气、调理气血、调补冲任、疏肝解郁、燥湿化痰、理气调经以及活血调经等。",
"evaluate": "问题中省略了“这段文档”的具体指代,如果没有额外的上下文信息,单独这个问题可能会引起疑惑,因为听者或读者可能不知道指的是哪篇文章。在大多数情况下,为了使问题更加明确,提问者应该提供文章的标题、作者或相关背景信息。",
"result": "N"
},
{
"question": "这些鱼体内的不饱和脂肪酸含量非常高,这是为什么?",
"answer": "因为这些鱼体内的脂肪酸构成比较特殊,不饱和脂肪酸的含量非常高,而饱和脂肪酸的含量则较低。",
"evaluate": "在中文提问的语言习惯中,问题中使用“这些”来指代一组已经提及或已知的鱼是合适的。然而,问题本身并没有提供足够的信息来确定“这些鱼”具体指的是哪些鱼,这就造成了主体的不明确。",
"result": "N"
},
{
"question": "如何食用黑芝麻以达到最佳效果?",
"answer": "我们平日里吃到的芝麻制品多为芝麻酱和芝麻香油。吃整粒的芝麻对于营养的吸收来说并不是最好的,因为芝麻的外面有一层稍硬的膜,只有把它碾碎,其中的营养素才能被吸收。所以,芝麻最好碾碎了再吃。",
"evaluate": "在这个问题中,主体“黑芝麻”是具体的食物,客体“食用方法以达到最佳效果”也是明确的,因为人们通常关心如何食用某种食物以获得最大的健康益处。因此这个问题是符合标准的。",
"result": "Y"
}
]
}

View File

@@ -0,0 +1,107 @@
# QA评估插件
## 背景
基于维度和描述对QA对进行评估,支持用户自定义维度。
### 约束:
- 维度小于10个
- 维度名称低于20个字
- 依赖大模型服务,服务输入输出如下:
```python
# 输入
request_template = {
"prompt": "你好",
"max_length": 2024,
"top_n": 0.9,
"temperature": 0.9
}
# 输出
response_template = {
"response":"XXX"
}
```
#### 默认3个维度:
- 问题是否独立
- 问答是否针对
- 语法是否错误
## 调用接口输入
```python
inputs = [[
{
"businessData": {
"params": {
"taskId":1,
"LLMUrl":"https://x.x.x.x:xxxx/qwen",
"LLMHeaders":{"Content-Type": "application/json","User-Agent":"Client"},
"LLMBody":{
"prompt": "你好",
"max_length": 2024,
"top_n": 0.9,
"temperature": 0.9
},
"dimension":[
{"dimension":"回答是否有针对性",
"description":"回答应对问题中的所有疑问点提供正面、直接的回答,不应引起疑惑。同时,答案不应有任何内容的遗漏,需构成一个完整的陈述。"
},
{"dimension":"问题是否独立",
"description":"仅分析问题,问题的主体和客体都比较明确,即使有省略,也符合语言习惯。在不需要补充其他信息的情况下不会引起疑惑。"
},
{"dimension":"语法是否错误",
"description":"问题为疑问句,答案为陈述句; 不存在词语搭配不当的情况;连接词和标点符号不存在错用情况;逻辑混乱的情况不存在;语法结构都正确且完整;"
}
]
}
},
"passData": {
"data": "",
"text": "[{\"question\":\"什么是秋燥、秋困和秋冻?\",\"answer\":\"秋燥、秋困和秋冻是秋天常见的三种症状和养生问题。秋燥是指秋天天气干燥,导致人体水分流失,出现皮肤发痒、嘴唇起皮、鼻咽干燥等症状;秋困是指秋天天气凉爽,人体代谢下降,导致人感到无精打采、呵欠连天、昏昏欲睡等症状;秋冻是指秋天气温下降,人体需要适应气温的变化,不能一下子穿上很多衣服,让身体适应气温的变化。\",\"qaId\":1}]",
"meta": {
}
},
"contextData": {}
}
]]
```
调用接口输出
```python
outputs = [
{
"businessData": {
"params": {
"taskId": 1,
"LLMUrl": "https://x.x.x.x:xxxx/qwen",
"LLMHeaders": {
"Content-Type": "application/json",
"User-Agent": "Client"
},
"LLMBody": {
"prompt": "你好",
"max_length": 2024,
"top_n": 0.9,
"temperature": 0.9
},
"dimension": [
{
"dimension": "回答是否有针对性",
"description": "回答应对问题中的所有疑问点提供正面、直接的回答,不应引起疑惑。同时,答案不应有任何内容的遗漏,需构成一个完整的陈述。"
},
{
"dimension": "问题是否独立",
"description": "仅分析问题,问题的主体和客体都比较明确,即使有省略,也符合语言习惯。在不需要补充其他信息的情况下不会引起疑惑。"
},
{
"dimension": "语法是否错误",
"description": "问题为疑问句,答案为陈述句; 不存在词语搭配不当的情况;连接词和标点符号不存在错用情况;逻辑混乱的情况不存在;语法结构都正确且完整;"
}
]
}
},
"passData": {
"data": "",
"text": "[{\"qaId\": 1, \"result\": [{\"dimension\": \"\回\答\是\否\有\针\对\性\", \"result\": true}, {\"dimension\": \"\问\题\是\否\独\立\", \"result\": true}, {\"dimension\": \"\语\法\是\否\错\误\", \"result\": true}]}]",
"meta": {}
},
"contextData": {}
}
]
```

View File

@@ -0,0 +1,17 @@
你将会获得一个问答对,判断问答对是否满足以下标准:
标准:"{criterion}"
要求:
1. 结合以上标准,一步一步的分析问答对是否满足标准,按照模板输出你的回答。
2. 如果你对自己的判断没有较强的信心,直接算作不满足标准。
3. 你的最终裁定应该是'Y'表示是(符合标准)或'N'表示否(不符合标准)。
4. 如果你的回答不符合模板格式和规范,重新思考回答。
{examples}
问答对:
问题:"{question}"
答案:"{answer}"
模板:
结果:[插入结果N或Y]
分析思路:XXX
"""

View File

@@ -0,0 +1,6 @@
# -*- coding: utf-8 -*-
from datamate.core.base_op import OPERATORS
OPERATORS.register_module(module_name='TextQualityEvaluation',
module_path="ops.llms.text_quality_evaluation.process")

View File

@@ -0,0 +1,43 @@
# -*- coding: utf-8 -*-
"""
Description: 指令数据生成常量
Create: 2023/11/20 16:20
"""
EVAL_DIMENSION_MAP = [
{
"dimension": "完备性",
"description": "数据的记录和信息是否是完整的,是否存在缺失的情况",
"score_name": "qua_score"
},
{
"dimension": "一致性",
"description": "同一指标在不同地方的结果是否一致",
"score_name": "logic_score"
},
{
"dimension": "有效性",
"description": "该样本涉及某领域的信息量",
"score_name": "effective_score"
}
]
BUSINESS_EVAL_DIMENSION_MAP = [
{
"dimension": "金融",
"description": "涉及保险合同、保险问答、年报、资产负债表、金融新闻、保险从业资格CICE、基金从业资格、期货从业资格、注册会计师(CPA"
")、理财规划师、税务师、精算师-金融数学、经济师、证券从业资格、银行从业资格等相关金融行业知识",
"score_name": "finance_score"
},
{
"dimension": "存储",
"description": "存储",
"score_name": "storage_score"
},
{
"dimension": "医疗",
"description": "涵盖中医科、儿科、内科、口腔科、外科、妇产科、心理科学、急诊科、感染与免疫科、生殖健康科、男性健康科、皮肤性病科、眼耳鼻喉科、神经科学、肿瘤科等医疗相关领域",
"score_name": "medical_score"
}
]

View File

@@ -0,0 +1,16 @@
name: '文本质量评估'
name_en: 'Text Quality Evaluation'
description: '通过用户维度和相应描述进行文本评估。'
description_en: 'Text evaluation is performed based on user dimensions and corresponding descriptions.'
language: 'python'
vendor: 'huawei'
raw_id: 'TextQualityEvaluation'
version: '1.0.0'
types:
- 'consolidate'
modal: 'text'
effect:
before: ''
after: ''
inputs: 'text'
outputs: 'text'

View File

@@ -0,0 +1,113 @@
# -- encoding: utf-8 --
"""
Description: 基于LLM通过用户设置维度和相应描述进行文本质量评估
Create: 2025/3/14 11:00
"""
import re
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import partial
from typing import Dict, Any
from loguru import logger
from datamate.common.utils.text_splitter import TextSplitter
from datamate.core.base_op import LLM
from .constant import EVAL_DIMENSION_MAP, BUSINESS_EVAL_DIMENSION_MAP
from .prompt_config import TEXT_QUALITY_EVALUATE_TEMPLATE
CHUNK_SIZE = 4000
CHUNK_OVERLAP = 0
class TextQualityEvaluation(LLM):
def __init__(self, *args, **kwargs):
super(TextQualityEvaluation, self).__init__(*args, **kwargs)
self.total_length = 0
self.text_list = []
self.total_scores = [0, 0, 0, 0, 0, 0]
self.text_splitter = TextSplitter(1024 * 1024, CHUNK_SIZE, CHUNK_OVERLAP)
self.pattern = r'\d+\.\d+'
self.task_id = kwargs.get("taskId", "default_id")
self.llm = self.get_llm(*args, **kwargs)
def execute(self, sample: Dict[str, Any]) -> Dict[str, Any]:
start = time.time()
tmp_text_list = self.text_splitter.split_text(sample[self.text_key])
logger.info(f"task id: {self.task_id}, the length of chunks: {len(tmp_text_list)}")
self.text_list = tmp_text_list
text_res = {}
self._evaluate_concurrently_text(text_res)
sample[self.text_key] = "Success"
self.save_sample([text_res], sample)
cost_time = time.time() - start
logger.info(f"task id: {self.task_id}, method: TextQualityEvaluation costs {cost_time:.6f} s")
self.text_list = []
return sample
def _evaluate_concurrently_text(self, text_res, max_workers: int = 5):
for eval_dimension in EVAL_DIMENSION_MAP + BUSINESS_EVAL_DIMENSION_MAP:
text_res[eval_dimension["score_name"]] = 0
self.total_scores = [0, 0, 0, 0, 0, 0]
self.total_length = 0
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# 使用 partial 绑定多参数
future_to_params = {
executor.submit(
partial(self.get_current_score_concurrently, text)): text
for text in self.text_list
}
for future in as_completed(future_to_params):
self.parse_execute_result(future, future_to_params)
for _, eval_dimension in enumerate(EVAL_DIMENSION_MAP + BUSINESS_EVAL_DIMENSION_MAP):
total_score = self.total_scores[_]
text_res[eval_dimension["score_name"]] = 0
if self.total_length > 0:
text_res[eval_dimension["score_name"]] = total_score / self.total_length
def parse_execute_result(self, future, future_to_params):
text = future_to_params[future]
try:
scores = future.result()
if scores and len(scores) == len(self.total_scores):
self.total_length += len(text)
for _, score in enumerate(scores):
self.total_scores[_] = self.total_scores[_] + score * len(text)
except Exception as e:
logger.error(f"Evaluate error, error details: {e}")
def get_current_score_concurrently(self, text, retry: int = 2):
dimension_list = []
for eval_dimension in EVAL_DIMENSION_MAP + BUSINESS_EVAL_DIMENSION_MAP:
dimension = eval_dimension["dimension"] + ":" + eval_dimension["description"]
dimension_list.append(dimension)
prompt = TEXT_QUALITY_EVALUATE_TEMPLATE.format(context=text, dimension0=dimension_list[0],
dimension1=dimension_list[1], dimension2=dimension_list[2],
dimension3=dimension_list[3], dimension4=dimension_list[4],
dimension5=dimension_list[5])
retry_time = 0
while True:
try:
return self.get_scores(prompt)
except RuntimeError as e:
if retry_time < retry:
retry_time += 1
else:
logger.warning(f"Request LLM error, details: {e}")
return []
def get_scores(self, prompt):
response = self.llm(prompt)
scores_str_list = response.split(",")
scores = []
for scores_str in scores_str_list:
decimals = re.findall(self.pattern, scores_str)
if decimals:
score = float(decimals[-1])
if 0 <= score <= 1:
scores.append(score)
logger.info(f"current evaluate scores: {scores}")
return scores

View File

@@ -0,0 +1,32 @@
# -*- coding: utf-8 -*-
"""
Description: prompt 配置文件
Create: 2024/02/07
"""
TEXT_QUALITY_EVALUATE_TEMPLATE = """
===
<Role>:
你是一位擅长文本质量评估的数据处理专家。
===
<Instructions>:
你擅长根据已知的Context内容, 结合每个评估标准Dimension,给出该标准下文本质量评估结果,结果为0-1的小数:
- 充分理解Context内容,质量评估时要覆盖Context的主要内容,不能随意臆想和编造。
- 如果你对自己的判断没有较强的信心,直接算作不满足标准,输出0.0分。
- 总计会有六个评估标准,分别是Dimension1~Dimension6,每个评估标准都需要给出对应标准下的评估分数,分数为0-1的小数。
- 每个评估标注都只输出最终的打分,不能输出额外的内容;每个评估标准的评估结果之间用英文逗号“,”分开。
===
<Task>
请基于下面的参考信息和<Instructions>,生成符合要求的内容。
输入:
参考信息Context是: "{context}"
第一个评估标准Dimension0是: "{dimension0}"
第二个评估标准Dimension1是: "{dimension1}"
第三个评估标准Dimension2是: "{dimension2}"
第四个评估标准Dimension3是: "{dimension3}"
第五个评估标准Dimension4是: "{dimension4}"
第六个评估标准Dimension5是: "{dimension5}"
输出:
"""

View File

@@ -0,0 +1,98 @@
{
"对文本逻辑连贯性的评分,范围1-5分": [
{
"question": "今天天气很好,我吃了苹果。数学题很难,天空是蓝色的。狗会叫,鸟会飞。1234567890。",
"answer": "1",
"evaluate": "这是一段完全没有逻辑的文字,主题不断跳跃,没有任何结构可循。",
"result": "1"
},
{
"question": "我今天早上吃了面包,然后去了公园。天气很好,但突然下起了雨。我思考人生的意义,然后决定回家吃冰淇淋。",
"answer": "2",
"evaluate": "内容尚可理解,但逻辑连贯性较差,主题跳跃明显。",
"result": "2"
},
{
"question": "人工智能正在改变世界。它可以帮助我们解决复杂的问题,但也带来了伦理挑战。例如,自动驾驶汽车需要做出道德决策。此外,人工智能还可以用于医疗诊断。",
"answer": "3",
"evaluate": "内容结构尚可,逻辑基本连贯,但存在少量混乱或跳跃。",
"result": "3"
},
{
"question": "人工智能正在改变世界。它可以帮助我们解决复杂的问题,但也带来了伦理挑战。例如,自动驾驶汽车需要做出道德决策。此外,人工智能还可以用于医疗诊断。这些应用展示了其潜力和局限性。",
"answer": "4",
"evaluate": "内容结构清晰,逻辑连贯,仅有极小混乱或跳跃。",
"result": "4"
},
{
"question": "人工智能正在改变世界。它可以帮助我们解决复杂的问题,但也带来了伦理挑战。例如,自动驾驶汽车需要做出道德决策。此外,人工智能还可以用于医疗诊断。这些应用展示了其潜力和局限性,同时也引发了关于技术与人类关系的深入讨论。",
"answer": "5",
"evaluate": "内容结构清晰,逻辑严密,无任何混乱或跳跃。",
"result": "5"
}
],
"对文本格式一致性的评分,范围1-5分": [
{
"question": "巴黎的埃菲尔铁塔很高,伦敦的塔桥很老,纽约的自由女神像很美。东京的涩谷很有名,新加坡的滨海湾很繁华。",
"answer": "1",
"evaluate": "这是一段完全没有格式一致性的文字,段落之间没有任何分隔,内容完全混乱。",
"result": "1"
},
{
"question": "巴黎的埃菲尔铁塔很高,伦敦的塔桥很老,纽约的自由女神像很美。东京的涩谷很有名,新加坡的滨海湾很繁华。这些地方都很有特色,但描述方式不统一。",
"answer": "2",
"evaluate": "内容尚可理解,但格式一致性较差,段落之间没有任何分隔,存在较多格式混乱。",
"result": "2"
},
{
"question": "巴黎的埃菲尔铁塔很高。伦敦的塔桥很老。纽约的自由女神像很美。东京的涩谷很有名。新加坡的滨海湾很繁华。这些地方都有独特的建筑风格。",
"answer": "3",
"evaluate": "内容结构尚可,格式基本一致,但存在少量格式混乱或不一致。",
"result": "3"
},
{
"question": "巴黎的埃菲尔铁塔很高。\n伦敦的塔桥很老。\n纽约的自由女神像很美。\n东京的涩谷很有名。\n新加坡的滨海湾很繁华。\n这些地方都有独特的建筑风格。",
"answer": "4",
"evaluate": "内容结构清晰,格式一致,仅有极小格式混乱或不一致。",
"result": "4"
},
{
"question": "### 世界著名建筑\n- **巴黎的埃菲尔铁塔**:高耸入云,象征浪漫。\n- **伦敦的塔桥**:历史悠久,充满工业风格。\n- **纽约的自由女神像**:象征自由,举世闻名。\n- **东京的涩谷**:现代都市的代表,充满活力。\n- **新加坡的滨海湾**:融合自然与现代建筑,令人惊叹。\n\n这些地方都有独特的建筑风格,展现了不同的文化特色。",
"answer": "5",
"evaluate": "内容结构清晰,格式完全一致,无任何混乱或格式错误。",
"result": "5"
}
],
"对文本信息完整性的评分,范围1-5分": [
{
"question": "这款手机很好。",
"answer": "1",
"evaluate": "这是一段完全没有信息完整性的文字,内容过于简单,没有任何具体信息。",
"result": "1"
},
{
"question": "这款手机很好,屏幕很大。",
"answer": "2",
"evaluate": "内容尚可理解,但信息完整性较差,缺乏关键细节,如性能、价格等。",
"result": "2"
},
{
"question": "这款手机很好,屏幕很大,运行速度快。",
"answer": "3",
"evaluate": "内容结构尚可,信息基本完整,但存在关键信息遗漏,如摄像头质量、价格等。",
"result": "3"
},
{
"question": "这款手机很好,屏幕很大,运行速度快,摄像头也很清晰。",
"answer": "4",
"evaluate": "内容结构清晰,信息较为完整,仅有少量关键信息遗漏。",
"result": "4"
},
{
"question": "### 这款手机的评测\n- **屏幕**:6.7英寸AMOLED,显示效果出色。\n- **性能**:搭载最新处理器,运行速度快,流畅无卡顿。\n- **摄像头**:4800万像素主摄,支持夜景模式,成像清晰。\n- **价格**:起售价为899美元,性价比高。\n- **优点**:屏幕显示效果好,性能强劲。\n- **缺点**:电池容量较小,续航一般。\n\n总体来说,这是一款综合表现优秀的手机。",
"answer": "5",
"evaluate": "内容结构清晰,信息完整且详细,涵盖了所有关键方面。",
"result": "5"
}
]
}

View File

@@ -0,0 +1,17 @@
你将会获得一个问答对,判断问答对是否满足以下标准:
标准:"{criterion}"
要求:
1. 结合以上标准,一步一步的分析question文本是否满足标准,这里的question不是指一个问题,只是输入的文本,按照模板输出每个维度的分数,你的result就是分数。额外输入一个维度平均分
2. 如果你对自己的判断没有较强的信心,直接算作不满足标准。
3. 你的最终裁定应该是1-5的评分,严格按照examples中打分的标准。
4. 如果你的回答不符合模板格式和规范,重新思考回答。
{examples}
问答对:
问题:"{question}"
答案:"{answer}"
模板:
结果:[1或2或3或4或5]
分析思路:XXX
"""