init datamate

This commit is contained in:
Dallas98
2025-10-21 23:00:48 +08:00
commit 1c97afed7d
692 changed files with 135442 additions and 0 deletions

View File

@@ -0,0 +1,113 @@
# -- encoding: utf-8 --
"""
Description: 基于LLM通过用户设置维度和相应描述进行文本质量评估
Create: 2025/3/14 11:00
"""
import re
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import partial
from typing import Dict, Any
from loguru import logger
from datamate.common.utils.text_splitter import TextSplitter
from datamate.core.base_op import LLM
from .constant import EVAL_DIMENSION_MAP, BUSINESS_EVAL_DIMENSION_MAP
from .prompt_config import TEXT_QUALITY_EVALUATE_TEMPLATE
CHUNK_SIZE = 4000
CHUNK_OVERLAP = 0
class TextQualityEvaluation(LLM):
def __init__(self, *args, **kwargs):
super(TextQualityEvaluation, self).__init__(*args, **kwargs)
self.total_length = 0
self.text_list = []
self.total_scores = [0, 0, 0, 0, 0, 0]
self.text_splitter = TextSplitter(1024 * 1024, CHUNK_SIZE, CHUNK_OVERLAP)
self.pattern = r'\d+\.\d+'
self.task_id = kwargs.get("taskId", "default_id")
self.llm = self.get_llm(*args, **kwargs)
def execute(self, sample: Dict[str, Any]) -> Dict[str, Any]:
start = time.time()
tmp_text_list = self.text_splitter.split_text(sample[self.text_key])
logger.info(f"task id: {self.task_id}, the length of chunks: {len(tmp_text_list)}")
self.text_list = tmp_text_list
text_res = {}
self._evaluate_concurrently_text(text_res)
sample[self.text_key] = "Success"
self.save_sample([text_res], sample)
cost_time = time.time() - start
logger.info(f"task id: {self.task_id}, method: TextQualityEvaluation costs {cost_time:.6f} s")
self.text_list = []
return sample
def _evaluate_concurrently_text(self, text_res, max_workers: int = 5):
for eval_dimension in EVAL_DIMENSION_MAP + BUSINESS_EVAL_DIMENSION_MAP:
text_res[eval_dimension["score_name"]] = 0
self.total_scores = [0, 0, 0, 0, 0, 0]
self.total_length = 0
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# 使用 partial 绑定多参数
future_to_params = {
executor.submit(
partial(self.get_current_score_concurrently, text)): text
for text in self.text_list
}
for future in as_completed(future_to_params):
self.parse_execute_result(future, future_to_params)
for _, eval_dimension in enumerate(EVAL_DIMENSION_MAP + BUSINESS_EVAL_DIMENSION_MAP):
total_score = self.total_scores[_]
text_res[eval_dimension["score_name"]] = 0
if self.total_length > 0:
text_res[eval_dimension["score_name"]] = total_score / self.total_length
def parse_execute_result(self, future, future_to_params):
text = future_to_params[future]
try:
scores = future.result()
if scores and len(scores) == len(self.total_scores):
self.total_length += len(text)
for _, score in enumerate(scores):
self.total_scores[_] = self.total_scores[_] + score * len(text)
except Exception as e:
logger.error(f"Evaluate error, error details: {e}")
def get_current_score_concurrently(self, text, retry: int = 2):
dimension_list = []
for eval_dimension in EVAL_DIMENSION_MAP + BUSINESS_EVAL_DIMENSION_MAP:
dimension = eval_dimension["dimension"] + ":" + eval_dimension["description"]
dimension_list.append(dimension)
prompt = TEXT_QUALITY_EVALUATE_TEMPLATE.format(context=text, dimension0=dimension_list[0],
dimension1=dimension_list[1], dimension2=dimension_list[2],
dimension3=dimension_list[3], dimension4=dimension_list[4],
dimension5=dimension_list[5])
retry_time = 0
while True:
try:
return self.get_scores(prompt)
except RuntimeError as e:
if retry_time < retry:
retry_time += 1
else:
logger.warning(f"Request LLM error, details: {e}")
return []
def get_scores(self, prompt):
response = self.llm(prompt)
scores_str_list = response.split(",")
scores = []
for scores_str in scores_str_list:
decimals = re.findall(self.pattern, scores_str)
if decimals:
score = float(decimals[-1])
if 0 <= score <= 1:
scores.append(score)
logger.info(f"current evaluate scores: {scores}")
return scores