init datamate

This commit is contained in:
Dallas98
2025-10-21 23:00:48 +08:00
commit 1c97afed7d
692 changed files with 135442 additions and 0 deletions

View File

@@ -0,0 +1,71 @@
# -- encoding: utf-8 --
"""
Description: 图片对比度自适应增强
Version:
Create: 2025/01/13
"""
import time
from typing import Dict, Any
import cv2
import numpy as np
from loguru import logger
from datamate.common.utils import bytes_transform
from datamate.core.base_op import Mapper
class ImgContrast(Mapper):
"""图片对比度自适应增强"""
def __init__(self, *args, **kwargs):
super(ImgContrast, self).__init__(*args, **kwargs)
# 自适应增强参数
self.clip_limit = 2 # 指定对比度限制阈值, 较大的值会产生更大的对比度增强效(不作为参数传入)。
self.tile_grid = 16 # 指定图像划分的网格大小,较小的网格大小会导致更局部的均衡化效果(不作为参数传入)。
self.standard_mean = 100 # 图片增强后的平均对比度(不作为参数传入)。
self.eps = 0.5 # 小值,计算图像对比度增强因子的时候,防止全黑图片导致的除零错(不作为参数传入)。
@staticmethod
def _get_contrast(image: np.ndarray):
"""计算图像所有通道的平均标准差"""
_, stddev = cv2.meanStdDev(image)
contrast_std = np.mean(stddev)
return contrast_std
def enhance_contrast(self, image_data: np.ndarray, file_name):
"""对比度自适应增强方法"""
contrast_std = self._get_contrast(image_data)
contrast_factor = self.standard_mean / (contrast_std + self.eps)
# 图片对比度较高,不需要增强对比度
if contrast_factor <= 1:
logger.info(f"fileName: {file_name}, method: ImgContrast not need enhancement")
return image_data
# 将彩色图像转换为Lab颜色空间
cv2.cvtColor(image_data, cv2.COLOR_BGR2Lab, dst=image_data)
# 使用局部自适应直方图均衡化进行对比度调整。
clahe = cv2.createCLAHE(clipLimit=self.clip_limit, tileGridSize=(self.tile_grid, self.tile_grid))
image_data[:, :, 0] = clahe.apply(image_data[:, :, 0])
# 将增强后的Lab图像转换回BGR颜色空间
cv2.cvtColor(image_data, cv2.COLOR_Lab2BGR, dst=image_data)
return image_data
def execute(self, sample: Dict[str, Any]):
start = time.time()
img_bytes = sample[self.data_key]
file_name = sample[self.filename_key]
file_type = "." + sample[self.filetype_key]
if img_bytes:
# 进行图片增强
img_data = bytes_transform.bytes_to_numpy(img_bytes)
img_data = self.enhance_contrast(img_data, file_name)
sample[self.data_key] = bytes_transform.numpy_to_bytes(img_data, file_type)
logger.info(f"fileName: {file_name}, method: ImgContrast costs {time.time() - start:6f} s")
return sample