You've already forked DataMate
feat(auto-annotation): integrate YOLO auto-labeling and enhance data management (#223)
* feat(auto-annotation): initial setup * chore: remove package-lock.json * chore: 清理本地测试脚本与 Maven 设置 * chore: change package-lock.json
This commit is contained in:
166
runtime/ops/annotation/image_semantic_segmentation/process.py
Normal file
166
runtime/ops/annotation/image_semantic_segmentation/process.py
Normal file
@@ -0,0 +1,166 @@
|
||||
import os
|
||||
import json
|
||||
from pathlib import Path
|
||||
from ultralytics import YOLO
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_color_by_class_id(class_id: int):
|
||||
"""根据 class_id 生成稳定颜色(BGR)"""
|
||||
np.random.seed(class_id)
|
||||
color = np.random.randint(0, 255, size=3).tolist()
|
||||
return tuple(color)
|
||||
|
||||
|
||||
def mask_to_polygons(mask: np.ndarray):
|
||||
"""将二值 mask 转换为 COCO 风格多边形列表"""
|
||||
contours, _ = cv2.findContours(
|
||||
mask,
|
||||
cv2.RETR_EXTERNAL,
|
||||
cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
|
||||
polygons = []
|
||||
for contour in contours:
|
||||
if contour.shape[0] < 3:
|
||||
continue
|
||||
polygon = contour.flatten().tolist()
|
||||
polygons.append(polygon)
|
||||
|
||||
return polygons
|
||||
|
||||
|
||||
IMAGE_DIR = "C:/Users/meta/Desktop/Datamate/yolo/Photos"
|
||||
OUT_IMG_DIR = "outputs_seg/images"
|
||||
OUT_JSON_DIR = "outputs_seg/annotations"
|
||||
|
||||
MODEL_MAP = {
|
||||
"n": "yolov8n-seg.pt",
|
||||
"s": "yolov8s-seg.pt",
|
||||
"m": "yolov8m-seg.pt",
|
||||
"l": "yolov8l-seg.pt",
|
||||
"x": "yolov8x-seg.pt",
|
||||
}
|
||||
MODEL_KEY = "x"
|
||||
MODEL_PATH = MODEL_MAP[MODEL_KEY]
|
||||
|
||||
CONF_THRES = 0.7
|
||||
DRAW_BBOX = True
|
||||
|
||||
COCO_CLASS_MAP = {
|
||||
0: "person", 1: "bicycle", 2: "car", 3: "motorcycle", 4: "airplane",
|
||||
5: "bus", 6: "train", 7: "truck", 8: "boat", 9: "traffic light",
|
||||
10: "fire hydrant", 11: "stop sign", 12: "parking meter", 13: "bench",
|
||||
14: "bird", 15: "cat", 16: "dog", 17: "horse", 18: "sheep", 19: "cow",
|
||||
20: "elephant", 21: "bear", 22: "zebra", 23: "giraffe", 24: "backpack",
|
||||
25: "umbrella", 26: "handbag", 27: "tie", 28: "suitcase", 29: "frisbee",
|
||||
30: "skis", 31: "snowboard", 32: "sports ball", 33: "kite",
|
||||
34: "baseball bat", 35: "baseball glove", 36: "skateboard",
|
||||
37: "surfboard", 38: "tennis racket", 39: "bottle",
|
||||
40: "wine glass", 41: "cup", 42: "fork", 43: "knife", 44: "spoon",
|
||||
45: "bowl", 46: "banana", 47: "apple", 48: "sandwich", 49: "orange",
|
||||
50: "broccoli", 51: "carrot", 52: "hot dog", 53: "pizza",
|
||||
54: "donut", 55: "cake", 56: "chair", 57: "couch",
|
||||
58: "potted plant", 59: "bed", 60: "dining table", 61: "toilet",
|
||||
62: "tv", 63: "laptop", 64: "mouse", 65: "remote",
|
||||
66: "keyboard", 67: "cell phone", 68: "microwave", 69: "oven",
|
||||
70: "toaster", 71: "sink", 72: "refrigerator", 73: "book",
|
||||
74: "clock", 75: "vase", 76: "scissors", 77: "teddy bear",
|
||||
78: "hair drier", 79: "toothbrush"
|
||||
}
|
||||
|
||||
TARGET_CLASS_IDS = [0, 2, 5]
|
||||
|
||||
os.makedirs(OUT_IMG_DIR, exist_ok=True)
|
||||
os.makedirs(OUT_JSON_DIR, exist_ok=True)
|
||||
|
||||
if TARGET_CLASS_IDS is not None:
|
||||
for cid in TARGET_CLASS_IDS:
|
||||
if cid not in COCO_CLASS_MAP:
|
||||
raise ValueError(f"Invalid class id: {cid}")
|
||||
|
||||
model = YOLO(MODEL_PATH)
|
||||
|
||||
image_paths = list(Path(IMAGE_DIR).glob("*.*"))
|
||||
|
||||
for img_path in image_paths:
|
||||
img = cv2.imread(str(img_path))
|
||||
if img is None:
|
||||
print(f"[WARN] Failed to read {img_path}")
|
||||
continue
|
||||
|
||||
results = model(img, conf=CONF_THRES)
|
||||
r = results[0]
|
||||
|
||||
h, w = img.shape[:2]
|
||||
annotations = {
|
||||
"image": img_path.name,
|
||||
"width": w,
|
||||
"height": h,
|
||||
"model_key": MODEL_KEY,
|
||||
"conf_threshold": CONF_THRES,
|
||||
"supported_classes": COCO_CLASS_MAP,
|
||||
"selected_class_ids": TARGET_CLASS_IDS,
|
||||
"instances": []
|
||||
}
|
||||
|
||||
if r.boxes is not None and r.masks is not None:
|
||||
for i, box in enumerate(r.boxes):
|
||||
cls_id = int(box.cls[0])
|
||||
if TARGET_CLASS_IDS is not None and cls_id not in TARGET_CLASS_IDS:
|
||||
continue
|
||||
|
||||
conf = float(box.conf[0])
|
||||
x1, y1, x2, y2 = map(float, box.xyxy[0])
|
||||
label = COCO_CLASS_MAP[cls_id]
|
||||
|
||||
mask = r.masks.data[i].cpu().numpy()
|
||||
mask = (mask > 0.5).astype(np.uint8)
|
||||
mask = cv2.resize(mask, (w, h), interpolation=cv2.INTER_NEAREST)
|
||||
|
||||
color = get_color_by_class_id(cls_id)
|
||||
img[mask == 1] = (
|
||||
img[mask == 1] * 0.5 + np.array(color) * 0.5
|
||||
).astype(np.uint8)
|
||||
|
||||
if True:
|
||||
cv2.rectangle(
|
||||
img,
|
||||
(int(x1), int(y1)),
|
||||
(int(x2), int(y2)),
|
||||
color,
|
||||
2
|
||||
)
|
||||
|
||||
cv2.putText(
|
||||
img,
|
||||
f"{label} {conf:.2f}",
|
||||
(int(x1), max(int(y1) - 5, 10)),
|
||||
cv2.FONT_HERSHEY_SIMPLEX,
|
||||
0.5,
|
||||
color,
|
||||
1
|
||||
)
|
||||
|
||||
polygons = mask_to_polygons(mask)
|
||||
|
||||
annotations["instances"].append({
|
||||
"label": label,
|
||||
"class_id": cls_id,
|
||||
"confidence": round(conf, 4),
|
||||
"bbox_xyxy": [x1, y1, x2, y2],
|
||||
"segmentation": polygons
|
||||
})
|
||||
|
||||
out_img_path = os.path.join(OUT_IMG_DIR, img_path.name)
|
||||
out_json_path = os.path.join(OUT_JSON_DIR, img_path.stem + ".json")
|
||||
|
||||
cv2.imwrite(out_img_path, img)
|
||||
|
||||
with open(out_json_path, "w", encoding="utf-8") as f:
|
||||
json.dump(annotations, f, indent=2, ensure_ascii=False)
|
||||
|
||||
print(f"[OK] {img_path.name}")
|
||||
|
||||
print("Segmentation batch finished.")
|
||||
Reference in New Issue
Block a user