Merge branch 'main' into develop_deer

This commit is contained in:
hhhhsc
2025-10-28 11:03:01 +08:00
121 changed files with 1999 additions and 935 deletions

View File

@@ -53,9 +53,6 @@ LS_TASK_PAGE_SIZE=1000
# =========================
# Data Management 服务配置
# =========================
# DM 服务地址
DM_SERVICE_BASE_URL=http://data-engine:8080
# DM 存储文件夹前缀(通常与 Label Studio 的 local-files 文件夹映射一致)
DM_FILE_PATH_PREFIX=/

View File

@@ -0,0 +1,86 @@
# Label Studio Adapter (DataMate)
这是 DataMate 的 Label Studio Adapter 服务,负责将 DataMate 的项目与 Label Studio 同步并提供对外的 HTTP API(基于 FastAPI)。
## 简要说明
- 框架:FastAPI
- 异步数据库/ORM:SQLAlchemy (async)
- 数据库迁移:Alembic
- 运行器:uvicorn
## 快速开始(开发)
1. 克隆仓库并进入项目目录
2. 创建并激活虚拟环境:
```bash
python -m venv .venv
source .venv/bin/activate
```
3. 安装依赖:
```bash
pip install -r requirements.txt
```
4. 准备环境变量(示例)
创建 `.env` 并设置必要的变量,例如:
- DATABASE_URL(或根据项目配置使用具体变量)
- LABEL_STUDIO_BASE_URL
- LABEL_STUDIO_USER_TOKEN
(具体变量请参考 `.env.example`
5. 数据库迁移(开发环境):
```bash
alembic upgrade head
```
6. 启动开发服务器(示例与常用参数):
- 本地开发(默认 host/port,自动重载):
```bash
uvicorn app.main:app --reload
```
- 指定主机与端口并打开调试日志:
```bash
uvicorn app.main:app --host 0.0.0.0 --port 8000 --reload --log-level debug
```
- 在生产环境使用多个 worker(不使用 --reload):
```bash
uvicorn app.main:app --host 0.0.0.0 --port 8000 --workers 4 --log-level info --proxy-headers
```
- 使用环境变量启动(示例):
```bash
HOST=0.0.0.0 PORT=8000 uvicorn app.main:app --reload
```
注意:
- `--reload` 仅用于开发,会监视文件变化并重启进程;不要在生产中使用。
- `--workers` 提供并发处理能力,但会增加内存占用;生产时通常配合进程管理或容器编排(Kubernetes)使用。
- 若需要完整的生产部署建议使用 ASGI 服务器(如 gunicorn + uvicorn workers / 或直接使用 uvicorn 在容器中配合进程管理)。
访问 API 文档:
- Swagger UI: http://127.0.0.1:8000/docs
- ReDoc: http://127.0.0.1:8000/redoc (推荐使用)
## 使用(简要)
- 所有 API 路径以 `/api` 前缀注册(见 `app/main.py``app.include_router(api_router, prefix="/api")`)。
- 根路径 `/` 返回服务信息和文档链接。
更多细节请查看 `doc/usage.md`(接口使用)和 `doc/development.md`(开发说明)。

View File

@@ -4,7 +4,7 @@ from typing import Optional
from app.db.database import get_db
from app.services.dataset_mapping_service import DatasetMappingService
from app.clients import get_clients
from app.infrastructure import DatamateClient, LabelStudioClient
from app.schemas.dataset_mapping import (
DatasetMappingCreateRequest,
DatasetMappingCreateResponse,
@@ -30,18 +30,19 @@ async def create_dataset_mapping(
注意一个数据集可以创建多个标注项目
"""
try:
# 获取全局客户端实例
dm_client_instance, ls_client_instance = get_clients()
dm_client = DatamateClient(db)
ls_client = LabelStudioClient(base_url=settings.label_studio_base_url,
token=settings.label_studio_user_token)
service = DatasetMappingService(db)
logger.info(f"Create dataset mapping request: {request.source_dataset_id}")
logger.info(f"Create dataset mapping request: {request.dataset_id}")
# 从DM服务获取数据集信息
dataset_info = await dm_client_instance.get_dataset(request.source_dataset_id)
dataset_info = await dm_client.get_dataset(request.dataset_id)
if not dataset_info:
raise HTTPException(
status_code=404,
detail=f"Dataset not found in DM service: {request.source_dataset_id}"
detail=f"Dataset not found in DM service: {request.dataset_id}"
)
# 确定数据类型(基于数据集类型)
@@ -55,11 +56,10 @@ async def create_dataset_mapping(
elif "text" in type_code:
data_type = "text"
# 生成项目名称
project_name = f"{dataset_info.name}"
# 在Label Studio中创建项目
project_data = await ls_client_instance.create_project(
project_data = await ls_client.create_project(
title=project_name,
description=dataset_info.description or f"Imported from DM dataset {dataset_info.id}",
data_type=data_type
@@ -74,8 +74,8 @@ async def create_dataset_mapping(
project_id = project_data["id"]
# 配置本地存储:dataset/<id>
local_storage_path = f"{settings.label_studio_local_storage_dataset_base_path}/{request.source_dataset_id}"
storage_result = await ls_client_instance.create_local_storage(
local_storage_path = f"{settings.label_studio_local_storage_dataset_base_path}/{request.dataset_id}"
storage_result = await ls_client.create_local_storage(
project_id=project_id,
path=local_storage_path,
title="Dataset_BLOB",
@@ -85,7 +85,7 @@ async def create_dataset_mapping(
# 配置本地存储:upload
local_storage_path = f"{settings.label_studio_local_storage_upload_base_path}"
storage_result = await ls_client_instance.create_local_storage(
storage_result = await ls_client.create_local_storage(
project_id=project_id,
path=local_storage_path,
title="Upload_BLOB",
@@ -107,7 +107,7 @@ async def create_dataset_mapping(
)
logger.debug(
f"Dataset mapping created: {mapping.mapping_id} -> S {mapping.source_dataset_id} <> L {mapping.labelling_project_id}"
f"Dataset mapping created: {mapping.mapping_id} -> S {mapping.dataset_id} <> L {mapping.labelling_project_id}"
)
response_data = DatasetMappingCreateResponse(

View File

@@ -1,13 +1,15 @@
from fastapi import APIRouter, Depends, HTTPException, Query
from fastapi import Depends, HTTPException, Query
from sqlalchemy.ext.asyncio import AsyncSession
from typing import Optional
from app.db.database import get_db
from app.services.dataset_mapping_service import DatasetMappingService
from app.clients import get_clients
from app.infrastructure import DatamateClient, LabelStudioClient
from app.schemas.dataset_mapping import DeleteDatasetResponse
from app.schemas import StandardResponse
from app.core.logging import get_logger
from app.core.config import settings
from . import project_router
logger = get_logger(__name__)
@@ -37,39 +39,39 @@ async def delete_mapping(
status_code=400,
detail="Either 'm' (mapping UUID) or 'proj' (project ID) must be provided"
)
# 获取全局客户端实例
dm_client_instance, ls_client_instance = get_clients()
ls_client = LabelStudioClient(base_url=settings.label_studio_base_url,
token=settings.label_studio_user_token)
service = DatasetMappingService(db)
mapping = None
# 优先使用 mapping_id 查询
if m:
logger.info(f"Deleting by mapping UUID: {m}")
logger.debug(f"Deleting by mapping UUID: {m}")
mapping = await service.get_mapping_by_uuid(m)
# 如果没有提供 m,使用 proj 查询
elif proj:
logger.info(f"Deleting by project ID: {proj}")
logger.debug(f"Deleting by project ID: {proj}")
mapping = await service.get_mapping_by_labelling_project_id(proj)
else:
mapping = None
if not mapping:
raise HTTPException(
status_code=404,
detail=f"Mapping not found"
detail=f"Mapping either not found or not specified."
)
mapping_id = mapping.mapping_id
labelling_project_id = mapping.labelling_project_id
labelling_project_name = mapping.labelling_project_name
logger.info(f"Found mapping: {mapping_id}, Label Studio project ID: {labelling_project_id}")
logger.debug(f"Found mapping: {mapping_id}, Label Studio project ID: {labelling_project_id}")
# 1. 删除 Label Studio 项目
try:
delete_success = await ls_client_instance.delete_project(int(labelling_project_id))
delete_success = await ls_client.delete_project(int(labelling_project_id))
if delete_success:
logger.info(f"Successfully deleted Label Studio project: {labelling_project_id}")
logger.debug(f"Successfully deleted Label Studio project: {labelling_project_id}")
else:
logger.warning(f"Failed to delete Label Studio project or project not found: {labelling_project_id}")
except Exception as e:
@@ -84,19 +86,17 @@ async def delete_mapping(
status_code=500,
detail="Failed to delete mapping record"
)
logger.info(f"Successfully deleted mapping: {mapping_id}")
response_data = DeleteDatasetResponse(
mapping_id=mapping_id,
status="success",
message=f"Successfully deleted mapping and Label Studio project '{labelling_project_name}'"
)
logger.info(f"Successfully deleted mapping: {mapping_id}, Label Studio project: {labelling_project_id}")
return StandardResponse(
code=200,
message="success",
data=response_data
data=DeleteDatasetResponse(
mapping_id=mapping_id,
status="success",
message=f"Successfully deleted mapping and Label Studio project '{labelling_project_name}'"
)
)
except HTTPException:

View File

@@ -98,9 +98,9 @@ async def get_mapping(
raise HTTPException(status_code=500, detail="Internal server error")
@project_router.get("/mappings/by-source/{source_dataset_id}", response_model=StandardResponse[PaginatedData[DatasetMappingResponse]])
@project_router.get("/mappings/by-source/{dataset_id}", response_model=StandardResponse[PaginatedData[DatasetMappingResponse]])
async def get_mappings_by_source(
source_dataset_id: str,
dataset_id: str,
page: int = Query(1, ge=1, description="页码(从1开始)"),
page_size: int = Query(20, ge=1, le=100, description="每页记录数"),
db: AsyncSession = Depends(get_db)
@@ -116,11 +116,11 @@ async def get_mappings_by_source(
# 计算 skip
skip = (page - 1) * page_size
logger.info(f"Get mappings by source dataset id: {source_dataset_id}, page={page}, page_size={page_size}")
logger.info(f"Get mappings by source dataset id: {dataset_id}, page={page}, page_size={page_size}")
# 获取数据和总数
mappings, total = await service.get_mappings_by_source_with_count(
source_dataset_id=source_dataset_id,
dataset_id=dataset_id,
skip=skip,
limit=page_size
)

View File

@@ -5,7 +5,7 @@ from typing import List, Optional
from app.db.database import get_db
from app.services.dataset_mapping_service import DatasetMappingService
from app.services.sync_service import SyncService
from app.clients import get_clients
from app.infrastructure import DatamateClient, LabelStudioClient
from app.exceptions import NoDatasetInfoFoundError, DatasetMappingNotFoundError
from app.schemas.dataset_mapping import (
DatasetMappingResponse,
@@ -14,6 +14,7 @@ from app.schemas.dataset_mapping import (
)
from app.schemas import StandardResponse
from app.core.logging import get_logger
from app.core.config import settings
from . import project_router
logger = get_logger(__name__)
@@ -30,10 +31,12 @@ async def sync_dataset_content(
在数据库中记录更新时间返回更新状态
"""
try:
dm_client_instance, ls_client_instance = get_clients()
ls_client = LabelStudioClient(base_url=settings.label_studio_base_url,
token=settings.label_studio_user_token)
dm_client = DatamateClient(db)
mapping_service = DatasetMappingService(db)
sync_service = SyncService(dm_client_instance, ls_client_instance, mapping_service)
sync_service = SyncService(dm_client, ls_client, mapping_service)
logger.info(f"Sync dataset content request: mapping_id={request.mapping_id}")
# 根据 mapping_id 获取映射关系

View File

@@ -27,7 +27,6 @@ async def get_config():
data={
"app_name": settings.app_name,
"version": settings.app_version,
"dm_service_url": settings.dm_service_base_url,
"label_studio_url": settings.label_studio_base_url,
"debug": settings.debug
}

View File

@@ -73,7 +73,6 @@ class Settings(BaseSettings):
# =========================
# Data Management 服务配置
# =========================
dm_service_base_url: str = "http://data-engine"
dm_file_path_prefix: str = "/" # DM存储文件夹前缀

View File

@@ -0,0 +1,6 @@
# app/clients/__init__.py
from .label_studio import Client as LabelStudioClient
from .datamate import Client as DatamateClient
__all__ = ["LabelStudioClient", "DatamateClient"]

View File

@@ -0,0 +1,159 @@
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.future import select
from sqlalchemy import func
from typing import Optional
from app.core.config import settings
from app.core.logging import get_logger
from app.schemas.dm_service import DatasetResponse, PagedDatasetFileResponse, DatasetFileResponse
from app.models.dm.dataset import Dataset
from app.models.dm.dataset_files import DatasetFiles
logger = get_logger(__name__)
class Client:
"""数据管理服务客户端 - 直接访问数据库"""
def __init__(self, db: AsyncSession):
"""
初始化 DM 客户端
Args:
db: 数据库会话
"""
self.db = db
logger.info("Initialize DM service client (Database mode)")
async def get_dataset(self, dataset_id: str) -> Optional[DatasetResponse]:
"""获取数据集详情"""
try:
logger.info(f"Getting dataset detail: {dataset_id} ...")
result = await self.db.execute(
select(Dataset).where(Dataset.id == dataset_id)
)
dataset = result.scalar_one_or_none()
if not dataset:
logger.error(f"Dataset not found: {dataset_id}")
return None
# 将数据库模型转换为响应模型
# type: ignore 用于忽略 SQLAlchemy 的类型检查问题
return DatasetResponse(
id=dataset.id, # type: ignore
name=dataset.name, # type: ignore
description=dataset.description or "", # type: ignore
datasetType=dataset.dataset_type, # type: ignore
status=dataset.status, # type: ignore
fileCount=dataset.file_count or 0, # type: ignore
totalSize=dataset.size_bytes or 0, # type: ignore
createdAt=dataset.created_at, # type: ignore
updatedAt=dataset.updated_at, # type: ignore
createdBy=dataset.created_by # type: ignore
)
except Exception as e:
logger.error(f"Failed to get dataset {dataset_id}: {e}")
return None
async def get_dataset_files(
self,
dataset_id: str,
page: int = 0,
size: int = 100,
file_type: Optional[str] = None,
status: Optional[str] = None
) -> Optional[PagedDatasetFileResponse]:
"""获取数据集文件列表"""
try:
logger.info(f"Get dataset files: dataset={dataset_id}, page={page}, size={size}")
# 构建查询
query = select(DatasetFiles).where(DatasetFiles.dataset_id == dataset_id)
# 添加可选过滤条件
if file_type:
query = query.where(DatasetFiles.file_type == file_type)
if status:
query = query.where(DatasetFiles.status == status)
# 获取总数
count_query = select(func.count()).select_from(DatasetFiles).where(
DatasetFiles.dataset_id == dataset_id
)
if file_type:
count_query = count_query.where(DatasetFiles.file_type == file_type)
if status:
count_query = count_query.where(DatasetFiles.status == status)
count_result = await self.db.execute(count_query)
total = count_result.scalar_one()
# 分页查询
query = query.offset(page * size).limit(size).order_by(DatasetFiles.created_at.desc())
result = await self.db.execute(query)
files = result.scalars().all()
# 转换为响应模型
# type: ignore 用于忽略 SQLAlchemy 的类型检查问题
content = [
DatasetFileResponse(
id=f.id, # type: ignore
fileName=f.file_name, # type: ignore
fileType=f.file_type or "", # type: ignore
filePath=f.file_path, # type: ignore
originalName=f.file_name, # type: ignore
size=f.file_size, # type: ignore
status=f.status, # type: ignore
uploadedAt=f.upload_time, # type: ignore
description=None,
uploadedBy=None,
lastAccessTime=f.last_access_time # type: ignore
)
for f in files
]
total_pages = (total + size - 1) // size if size > 0 else 0
return PagedDatasetFileResponse(
content=content,
totalElements=total,
totalPages=total_pages,
page=page,
size=size
)
except Exception as e:
logger.error(f"Failed to get dataset files for {dataset_id}: {e}")
return None
async def download_file(self, dataset_id: str, file_id: str) -> Optional[bytes]:
"""
下载文件内容
注意:此方法保留接口兼容性,但实际文件下载可能需要通过文件系统或对象存储
"""
logger.warning(f"download_file is deprecated when using database mode. Use get_file_download_url instead.")
return None
async def get_file_download_url(self, dataset_id: str, file_id: str) -> Optional[str]:
"""获取文件下载URL(或文件路径)"""
try:
result = await self.db.execute(
select(DatasetFiles).where(
DatasetFiles.id == file_id,
DatasetFiles.dataset_id == dataset_id
)
)
file = result.scalar_one_or_none()
if not file:
logger.error(f"File not found: {file_id} in dataset {dataset_id}")
return None
# 返回文件路径(可以是本地路径或对象存储URL)
return file.file_path # type: ignore
except Exception as e:
logger.error(f"Failed to get file path for {file_id}: {e}")
return None
async def close(self):
"""关闭客户端连接(数据库模式下无需操作)"""
logger.info("DM service client closed (Database mode)")

View File

@@ -12,7 +12,7 @@ from app.schemas.label_studio import (
logger = get_logger(__name__)
class LabelStudioClient:
class Client:
"""Label Studio服务客户端
使用 HTTP REST API 直接与 Label Studio 交互

View File

@@ -8,7 +8,7 @@ from typing import Dict, Any
from .core.config import settings
from .core.logging import setup_logging, get_logger
from .clients import DMServiceClient, LabelStudioClient, set_clients
from .infrastructure import LabelStudioClient
from .api import api_router
from .schemas import StandardResponse
@@ -23,23 +23,12 @@ async def lifespan(app: FastAPI):
# 启动时初始化
logger.info("Starting Label Studio Adapter...")
# 初始化客户端
dm_client = DMServiceClient()
# 初始化 Label Studio 客户端,使用 HTTP REST API + Token 认证
ls_client = LabelStudioClient(
base_url=settings.label_studio_base_url,
token=settings.label_studio_user_token
)
# 设置全局客户端
set_clients(dm_client, ls_client)
# 数据库初始化由 Alembic 管理
# 在 Docker 环境中,entrypoint.sh 会在启动前运行: alembic upgrade head
# 在开发环境中,手动运行: alembic upgrade head
logger.info("Database schema managed by Alembic")
logger.info("Label Studio Adapter started")
yield
@@ -155,7 +144,6 @@ async def root():
"message": f"{settings.app_name} is running",
"version": settings.app_version,
"docs_url": "/docs",
"dm_service_url": settings.dm_service_base_url,
"label_studio_url": settings.label_studio_base_url
}
)

View File

@@ -0,0 +1,138 @@
# DataMate 数据模型结构
本文档列出了根据 `scripts/db` 中的 SQL 文件创建的所有 Python 数据模型。
## 模型组织结构
```
app/models/
├── __init__.py # 主模块导出文件
├── dm/ # 数据管理 (Data Management) 模块
│ ├── __init__.py
│ ├── annotation_template.py # 标注模板
│ ├── labeling_project.py # 标注项目
│ ├── dataset.py # 数据集
│ ├── dataset_files.py # 数据集文件
│ ├── dataset_statistics.py # 数据集统计
│ ├── dataset_tag.py # 数据集标签关联
│ ├── tag.py # 标签
│ └── user.py # 用户
├── cleaning/ # 数据清洗 (Data Cleaning) 模块
│ ├── __init__.py
│ ├── clean_template.py # 清洗模板
│ ├── clean_task.py # 清洗任务
│ ├── operator_instance.py # 算子实例
│ └── clean_result.py # 清洗结果
├── collection/ # 数据归集 (Data Collection) 模块
│ ├── __init__.py
│ ├── task_execution.py # 任务执行明细
│ ├── collection_task.py # 数据归集任务
│ ├── task_log.py # 任务执行记录
│ └── datax_template.py # DataX模板配置
├── common/ # 通用 (Common) 模块
│ ├── __init__.py
│ └── chunk_upload_request.py # 文件切片上传请求
└── operator/ # 算子 (Operator) 模块
├── __init__.py
├── operator.py # 算子
├── operator_category.py # 算子分类
└── operator_category_relation.py # 算子分类关联
```
## 模块详情
### 1. Data Management (DM) 模块
对应 SQL: `data-management-init.sql``data-annotation-init.sql`
#### 模型列表:
- **AnnotationTemplate** (`t_dm_annotation_templates`) - 标注模板
- **LabelingProject** (`t_dm_labeling_projects`) - 标注项目
- **Dataset** (`t_dm_datasets`) - 数据集(支持医学影像、文本、问答等多种类型)
- **DatasetFiles** (`t_dm_dataset_files`) - 数据集文件
- **DatasetStatistics** (`t_dm_dataset_statistics`) - 数据集统计信息
- **Tag** (`t_dm_tags`) - 标签
- **DatasetTag** (`t_dm_dataset_tags`) - 数据集标签关联
- **User** (`users`) - 用户
### 2. Data Cleaning 模块
对应 SQL: `data-cleaning-init.sql`
#### 模型列表:
- **CleanTemplate** (`t_clean_template`) - 清洗模板
- **CleanTask** (`t_clean_task`) - 清洗任务
- **OperatorInstance** (`t_operator_instance`) - 算子实例
- **CleanResult** (`t_clean_result`) - 清洗结果
### 3. Data Collection (DC) 模块
对应 SQL: `data-collection-init.sql`
#### 模型列表:
- **TaskExecution** (`t_dc_task_executions`) - 任务执行明细
- **CollectionTask** (`t_dc_collection_tasks`) - 数据归集任务
- **TaskLog** (`t_dc_task_log`) - 任务执行记录
- **DataxTemplate** (`t_dc_datax_templates`) - DataX模板配置
### 4. Common 模块
对应 SQL: `data-common-init.sql`
#### 模型列表:
- **ChunkUploadRequest** (`t_chunk_upload_request`) - 文件切片上传请求
### 5. Operator 模块
对应 SQL: `data-operator-init.sql`
#### 模型列表:
- **Operator** (`t_operator`) - 算子
- **OperatorCategory** (`t_operator_category`) - 算子分类
- **OperatorCategoryRelation** (`t_operator_category_relation`) - 算子分类关联
## 使用方式
```python
# 导入所有模型
from app.models import (
# DM 模块
AnnotationTemplate,
LabelingProject,
Dataset,
DatasetFiles,
DatasetStatistics,
DatasetTag,
Tag,
User,
# Cleaning 模块
CleanTemplate,
CleanTask,
OperatorInstance,
CleanResult,
# Collection 模块
TaskExecution,
CollectionTask,
TaskLog,
DataxTemplate,
# Common 模块
ChunkUploadRequest,
# Operator 模块
Operator,
OperatorCategory,
OperatorCategoryRelation
)
# 或者按模块导入
from app.models.dm import Dataset, DatasetFiles
from app.models.collection import CollectionTask
from app.models.operator import Operator
```
## 注意事项
1. **UUID 主键**: 大部分表使用 UUID (String(36)) 作为主键
2. **时间戳**: 使用 `TIMESTAMP` 类型,并配置自动更新
3. **软删除**: 部分模型(如 AnnotationTemplate, LabelingProject)支持软删除,包含 `deleted_at` 字段和 `is_deleted` 属性
4. **JSON 字段**: 配置信息、元数据等使用 JSON 类型存储
5. **字段一致性**: 所有模型字段都严格按照 SQL 定义创建,确保与数据库表结构完全一致
## 更新记录
- 2025-10-25: 根据 `scripts/db` 中的 SQL 文件创建所有数据模型
- 已更新现有的 `annotation_template.py``labeling_project.py``dataset_files.py` 以匹配 SQL 定义

View File

@@ -0,0 +1,69 @@
# app/models/__init__.py
# Data Management (DM) 模块
from .dm import (
AnnotationTemplate,
LabelingProject,
Dataset,
DatasetFiles,
DatasetStatistics,
DatasetTag,
Tag,
User
)
# Data Cleaning 模块
from .cleaning import (
CleanTemplate,
CleanTask,
OperatorInstance,
CleanResult
)
# Data Collection (DC) 模块
from .collection import (
TaskExecution,
CollectionTask,
TaskLog,
DataxTemplate
)
# Common 模块
from .common import (
ChunkUploadRequest
)
# Operator 模块
from .operator import (
Operator,
OperatorCategory,
OperatorCategoryRelation
)
__all__ = [
# DM 模块
"AnnotationTemplate",
"LabelingProject",
"Dataset",
"DatasetFiles",
"DatasetStatistics",
"DatasetTag",
"Tag",
"User",
# Cleaning 模块
"CleanTemplate",
"CleanTask",
"OperatorInstance",
"CleanResult",
# Collection 模块
"TaskExecution",
"CollectionTask",
"TaskLog",
"DataxTemplate",
# Common 模块
"ChunkUploadRequest",
# Operator 模块
"Operator",
"OperatorCategory",
"OperatorCategoryRelation"
]

View File

@@ -0,0 +1,13 @@
# app/models/cleaning/__init__.py
from .clean_template import CleanTemplate
from .clean_task import CleanTask
from .operator_instance import OperatorInstance
from .clean_result import CleanResult
__all__ = [
"CleanTemplate",
"CleanTask",
"OperatorInstance",
"CleanResult"
]

View File

@@ -0,0 +1,22 @@
from sqlalchemy import Column, String, BigInteger, Text
from app.db.database import Base
class CleanResult(Base):
"""清洗结果模型"""
__tablename__ = "t_clean_result"
instance_id = Column(String(64), primary_key=True, comment="实例ID")
src_file_id = Column(String(64), nullable=True, comment="源文件ID")
dest_file_id = Column(String(64), primary_key=True, comment="目标文件ID")
src_name = Column(String(256), nullable=True, comment="源文件名")
dest_name = Column(String(256), nullable=True, comment="目标文件名")
src_type = Column(String(256), nullable=True, comment="源文件类型")
dest_type = Column(String(256), nullable=True, comment="目标文件类型")
src_size = Column(BigInteger, nullable=True, comment="源文件大小")
dest_size = Column(BigInteger, nullable=True, comment="目标文件大小")
status = Column(String(256), nullable=True, comment="处理状态")
result = Column(Text, nullable=True, comment="处理结果")
def __repr__(self):
return f"<CleanResult(instance_id={self.instance_id}, dest_file_id={self.dest_file_id}, status={self.status})>"

View File

@@ -0,0 +1,27 @@
from sqlalchemy import Column, String, BigInteger, Integer, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
class CleanTask(Base):
"""清洗任务模型"""
__tablename__ = "t_clean_task"
id = Column(String(64), primary_key=True, comment="任务ID")
name = Column(String(64), nullable=True, comment="任务名称")
description = Column(String(256), nullable=True, comment="任务描述")
status = Column(String(256), nullable=True, comment="任务状态")
src_dataset_id = Column(String(64), nullable=True, comment="源数据集ID")
src_dataset_name = Column(String(64), nullable=True, comment="源数据集名称")
dest_dataset_id = Column(String(64), nullable=True, comment="目标数据集ID")
dest_dataset_name = Column(String(64), nullable=True, comment="目标数据集名称")
before_size = Column(BigInteger, nullable=True, comment="清洗前大小")
after_size = Column(BigInteger, nullable=True, comment="清洗后大小")
file_count = Column(Integer, nullable=True, comment="文件数量")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
started_at = Column(TIMESTAMP, nullable=True, comment="开始时间")
finished_at = Column(TIMESTAMP, nullable=True, comment="完成时间")
created_by = Column(String(256), nullable=True, comment="创建者")
def __repr__(self):
return f"<CleanTask(id={self.id}, name={self.name}, status={self.status})>"

View File

@@ -0,0 +1,18 @@
from sqlalchemy import Column, String, Text, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
class CleanTemplate(Base):
"""清洗模板模型"""
__tablename__ = "t_clean_template"
id = Column(String(64), primary_key=True, unique=True, comment="模板ID")
name = Column(String(64), nullable=True, comment="模板名称")
description = Column(String(256), nullable=True, comment="模板描述")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
created_by = Column(String(256), nullable=True, comment="创建者")
def __repr__(self):
return f"<CleanTemplate(id={self.id}, name={self.name})>"

View File

@@ -0,0 +1,15 @@
from sqlalchemy import Column, String, Integer, Text
from app.db.database import Base
class OperatorInstance(Base):
"""算子实例模型"""
__tablename__ = "t_operator_instance"
instance_id = Column(String(256), primary_key=True, comment="实例ID")
operator_id = Column(String(256), primary_key=True, comment="算子ID")
op_index = Column(Integer, primary_key=True, comment="算子索引")
settings_override = Column(Text, nullable=True, comment="配置覆盖")
def __repr__(self):
return f"<OperatorInstance(instance_id={self.instance_id}, operator_id={self.operator_id}, index={self.op_index})>"

View File

@@ -0,0 +1,13 @@
# app/models/collection/__init__.py
from .task_execution import TaskExecution
from .collection_task import CollectionTask
from .task_log import TaskLog
from .datax_template import DataxTemplate
__all__ = [
"TaskExecution",
"CollectionTask",
"TaskLog",
"DataxTemplate"
]

View File

@@ -0,0 +1,28 @@
from sqlalchemy import Column, String, Text, Integer, BigInteger, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
class CollectionTask(Base):
"""数据归集任务模型"""
__tablename__ = "t_dc_collection_tasks"
id = Column(String(36), primary_key=True, comment="任务ID(UUID)")
name = Column(String(255), nullable=False, comment="任务名称")
description = Column(Text, nullable=True, comment="任务描述")
sync_mode = Column(String(20), default='ONCE', comment="同步模式:ONCE/SCHEDULED")
config = Column(Text, nullable=False, comment="归集配置(DataX配置),包含源端和目标端配置信息")
schedule_expression = Column(String(255), nullable=True, comment="Cron调度表达式")
status = Column(String(20), default='DRAFT', comment="任务状态:DRAFT/READY/RUNNING/SUCCESS/FAILED/STOPPED")
retry_count = Column(Integer, default=3, comment="重试次数")
timeout_seconds = Column(Integer, default=3600, comment="超时时间(秒)")
max_records = Column(BigInteger, nullable=True, comment="最大处理记录数")
sort_field = Column(String(100), nullable=True, comment="增量字段")
last_execution_id = Column(String(36), nullable=True, comment="最后执行ID(UUID)")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
created_by = Column(String(255), nullable=True, comment="创建者")
updated_by = Column(String(255), nullable=True, comment="更新者")
def __repr__(self):
return f"<CollectionTask(id={self.id}, name={self.name}, status={self.status})>"

View File

@@ -0,0 +1,23 @@
from sqlalchemy import Column, String, Text, Boolean, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
class DataxTemplate(Base):
"""DataX模板配置模型"""
__tablename__ = "t_dc_datax_templates"
id = Column(String(36), primary_key=True, comment="模板ID(UUID)")
name = Column(String(255), nullable=False, unique=True, comment="模板名称")
source_type = Column(String(50), nullable=False, comment="源数据源类型")
target_type = Column(String(50), nullable=False, comment="目标数据源类型")
template_content = Column(Text, nullable=False, comment="模板内容")
description = Column(Text, nullable=True, comment="模板描述")
version = Column(String(20), default='1.0.0', comment="版本号")
is_system = Column(Boolean, default=False, comment="是否系统模板")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
created_by = Column(String(255), nullable=True, comment="创建者")
def __repr__(self):
return f"<DataxTemplate(id={self.id}, name={self.name}, source={self.source_type}, target={self.target_type})>"

View File

@@ -0,0 +1,34 @@
from sqlalchemy import Column, String, Text, Integer, BigInteger, DECIMAL, JSON, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
class TaskExecution(Base):
"""任务执行明细模型"""
__tablename__ = "t_dc_task_executions"
id = Column(String(36), primary_key=True, comment="执行记录ID(UUID)")
task_id = Column(String(36), nullable=False, comment="任务ID")
task_name = Column(String(255), nullable=False, comment="任务名称")
status = Column(String(20), default='RUNNING', comment="执行状态:RUNNING/SUCCESS/FAILED/STOPPED")
progress = Column(DECIMAL(5, 2), default=0.00, comment="进度百分比")
records_total = Column(BigInteger, default=0, comment="总记录数")
records_processed = Column(BigInteger, default=0, comment="已处理记录数")
records_success = Column(BigInteger, default=0, comment="成功记录数")
records_failed = Column(BigInteger, default=0, comment="失败记录数")
throughput = Column(DECIMAL(10, 2), default=0.00, comment="吞吐量(条/秒)")
data_size_bytes = Column(BigInteger, default=0, comment="数据量(字节)")
started_at = Column(TIMESTAMP, nullable=True, comment="开始时间")
completed_at = Column(TIMESTAMP, nullable=True, comment="完成时间")
duration_seconds = Column(Integer, default=0, comment="执行时长(秒)")
config = Column(JSON, nullable=True, comment="执行配置")
error_message = Column(Text, nullable=True, comment="错误信息")
datax_job_id = Column(Text, nullable=True, comment="datax任务ID")
result = Column(Text, nullable=True, comment="执行结果")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
created_by = Column(String(255), nullable=True, comment="创建者")
updated_by = Column(String(255), nullable=True, comment="更新者")
def __repr__(self):
return f"<TaskExecution(id={self.id}, task_id={self.task_id}, status={self.status})>"

View File

@@ -0,0 +1,26 @@
from sqlalchemy import Column, String, Text, Integer, BigInteger, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
class TaskLog(Base):
"""任务执行记录模型"""
__tablename__ = "t_dc_task_log"
id = Column(String(36), primary_key=True, comment="执行记录ID(UUID)")
task_id = Column(String(36), nullable=False, comment="任务ID")
task_name = Column(String(255), nullable=False, comment="任务名称")
sync_mode = Column(String(20), default='FULL', comment="同步模式:FULL/INCREMENTAL")
status = Column(String(20), default='RUNNING', comment="执行状态:RUNNING/SUCCESS/FAILED/STOPPED")
start_time = Column(TIMESTAMP, nullable=True, comment="开始时间")
end_time = Column(TIMESTAMP, nullable=True, comment="结束时间")
duration = Column(BigInteger, nullable=True, comment="执行时长(毫秒)")
process_id = Column(String(50), nullable=True, comment="进程ID")
log_path = Column(String(500), nullable=True, comment="日志文件路径")
error_msg = Column(Text, nullable=True, comment="错误信息")
result = Column(Text, nullable=True, comment="执行结果")
retry_times = Column(Integer, default=0, comment="重试次数")
create_time = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
def __repr__(self):
return f"<TaskLog(id={self.id}, task_id={self.task_id}, status={self.status})>"

View File

@@ -0,0 +1,7 @@
# app/models/common/__init__.py
from .chunk_upload_request import ChunkUploadRequest
__all__ = [
"ChunkUploadRequest"
]

View File

@@ -0,0 +1,19 @@
from sqlalchemy import Column, String, Integer, Text, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
class ChunkUploadRequest(Base):
"""文件切片上传请求模型"""
__tablename__ = "t_chunk_upload_request"
id = Column(String(36), primary_key=True, comment="UUID")
total_file_num = Column(Integer, nullable=True, comment="总文件数")
uploaded_file_num = Column(Integer, nullable=True, comment="已上传文件数")
upload_path = Column(String(256), nullable=True, comment="文件路径")
timeout = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="上传请求超时时间")
service_id = Column(String(64), nullable=True, comment="上传请求所属服务:DATA-MANAGEMENT(数据管理)")
check_info = Column(Text, nullable=True, comment="业务信息")
def __repr__(self):
return f"<ChunkUploadRequest(id={self.id}, service_id={self.service_id}, progress={self.uploaded_file_num}/{self.total_file_num})>"

View File

@@ -0,0 +1,21 @@
# app/models/dm/__init__.py
from .annotation_template import AnnotationTemplate
from .labeling_project import LabelingProject
from .dataset import Dataset
from .dataset_files import DatasetFiles
from .dataset_statistics import DatasetStatistics
from .dataset_tag import DatasetTag
from .tag import Tag
from .user import User
__all__ = [
"AnnotationTemplate",
"LabelingProject",
"Dataset",
"DatasetFiles",
"DatasetStatistics",
"DatasetTag",
"Tag",
"User"
]

View File

@@ -0,0 +1,24 @@
from sqlalchemy import Column, String, JSON, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
import uuid
class AnnotationTemplate(Base):
"""标注模板模型"""
__tablename__ = "t_dm_annotation_templates"
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID主键ID")
name = Column(String(32), nullable=False, comment="模板名称")
description = Column(String(255), nullable=True, comment="模板描述")
configuration = Column(JSON, nullable=True, comment="配置信息(JSON格式)")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
deleted_at = Column(TIMESTAMP, nullable=True, comment="删除时间(软删除)")
def __repr__(self):
return f"<AnnotationTemplate(id={self.id}, name={self.name})>"
@property
def is_deleted(self) -> bool:
"""检查是否已被软删除"""
return self.deleted_at is not None

View File

@@ -0,0 +1,35 @@
from sqlalchemy import Column, String, Text, BigInteger, Integer, Boolean, JSON, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
import uuid
class Dataset(Base):
"""数据集模型(支持医学影像、文本、问答等多种类型)"""
__tablename__ = "t_dm_datasets"
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID")
name = Column(String(255), nullable=False, comment="数据集名称")
description = Column(Text, nullable=True, comment="数据集描述")
dataset_type = Column(String(50), nullable=False, comment="数据集类型:IMAGE/TEXT/QA/MULTIMODAL/OTHER")
category = Column(String(100), nullable=True, comment="数据集分类:医学影像/问答/文献等")
path = Column(String(500), nullable=True, comment="数据存储路径")
format = Column(String(50), nullable=True, comment="数据格式:DCM/JPG/JSON/CSV等")
schema_info = Column(JSON, nullable=True, comment="数据结构信息")
size_bytes = Column(BigInteger, default=0, comment="数据大小(字节)")
file_count = Column(BigInteger, default=0, comment="文件数量")
record_count = Column(BigInteger, default=0, comment="记录数量")
retention_days = Column(Integer, default=0, comment="数据保留天数(0表示长期保留)")
tags = Column(JSON, nullable=True, comment="标签列表")
metadata = Column(JSON, nullable=True, comment="元数据信息")
status = Column(String(50), default='DRAFT', comment="状态:DRAFT/ACTIVE/ARCHIVED")
is_public = Column(Boolean, default=False, comment="是否公开")
is_featured = Column(Boolean, default=False, comment="是否推荐")
version = Column(BigInteger, nullable=False, default=0, comment="版本号")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
created_by = Column(String(255), nullable=True, comment="创建者")
updated_by = Column(String(255), nullable=True, comment="更新者")
def __repr__(self):
return f"<Dataset(id={self.id}, name={self.name}, type={self.dataset_type})>"

View File

@@ -0,0 +1,27 @@
from sqlalchemy import Column, String, JSON, BigInteger, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
import uuid
class DatasetFiles(Base):
"""DM数据集文件模型"""
__tablename__ = "t_dm_dataset_files"
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID")
dataset_id = Column(String(36), nullable=False, comment="所属数据集ID(UUID)")
file_name = Column(String(255), nullable=False, comment="文件名")
file_path = Column(String(1000), nullable=False, comment="文件路径")
file_type = Column(String(50), nullable=True, comment="文件格式:JPG/PNG/DCM/TXT等")
file_size = Column(BigInteger, default=0, comment="文件大小(字节)")
check_sum = Column(String(64), nullable=True, comment="文件校验和")
tags = Column(JSON, nullable=True, comment="文件标签信息")
metadata = Column(JSON, nullable=True, comment="文件元数据")
status = Column(String(50), default='ACTIVE', comment="文件状态:ACTIVE/DELETED/PROCESSING")
upload_time = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="上传时间")
last_access_time = Column(TIMESTAMP, nullable=True, comment="最后访问时间")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
def __repr__(self):
return f"<DatasetFiles(id={self.id}, dataset_id={self.dataset_id}, file_name={self.file_name})>"

View File

@@ -0,0 +1,25 @@
from sqlalchemy import Column, String, Date, BigInteger, JSON, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
import uuid
class DatasetStatistics(Base):
"""数据集统计信息模型"""
__tablename__ = "t_dm_dataset_statistics"
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID")
dataset_id = Column(String(36), nullable=False, comment="数据集ID(UUID)")
stat_date = Column(Date, nullable=False, comment="统计日期")
total_files = Column(BigInteger, default=0, comment="总文件数")
total_size = Column(BigInteger, default=0, comment="总大小(字节)")
processed_files = Column(BigInteger, default=0, comment="已处理文件数")
error_files = Column(BigInteger, default=0, comment="错误文件数")
download_count = Column(BigInteger, default=0, comment="下载次数")
view_count = Column(BigInteger, default=0, comment="查看次数")
quality_metrics = Column(JSON, nullable=True, comment="质量指标")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
def __repr__(self):
return f"<DatasetStatistics(id={self.id}, dataset_id={self.dataset_id}, date={self.stat_date})>"

View File

@@ -0,0 +1,15 @@
from sqlalchemy import Column, String, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
class DatasetTag(Base):
"""数据集标签关联模型"""
__tablename__ = "t_dm_dataset_tags"
dataset_id = Column(String(36), primary_key=True, comment="数据集ID(UUID)")
tag_id = Column(String(36), primary_key=True, comment="标签ID(UUID)")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
def __repr__(self):
return f"<DatasetTag(dataset_id={self.dataset_id}, tag_id={self.tag_id})>"

View File

@@ -0,0 +1,26 @@
from sqlalchemy import Column, String, Integer, JSON, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
import uuid
class LabelingProject(Base):
"""DM标注项目模型(原 DatasetMapping)"""
__tablename__ = "t_dm_labeling_projects"
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID主键ID")
dataset_id = Column(String(36), nullable=False, comment="数据集ID")
name = Column(String(32), nullable=False, comment="项目名称")
labeling_project_id = Column(Integer, nullable=False, comment="Label Studio项目ID")
configuration = Column(JSON, nullable=True, comment="标签配置")
progress = Column(JSON, nullable=True, comment="标注进度统计")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
deleted_at = Column(TIMESTAMP, nullable=True, comment="删除时间(软删除)")
def __repr__(self):
return f"<LabelingProject(id={self.id}, dataset_id={self.dataset_id}, name={self.name})>"
@property
def is_deleted(self) -> bool:
"""检查是否已被软删除"""
return self.deleted_at is not None

View File

@@ -0,0 +1,21 @@
from sqlalchemy import Column, String, Text, BigInteger, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
import uuid
class Tag(Base):
"""标签模型"""
__tablename__ = "t_dm_tags"
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID")
name = Column(String(100), nullable=False, unique=True, comment="标签名称")
description = Column(Text, nullable=True, comment="标签描述")
category = Column(String(50), nullable=True, comment="标签分类")
color = Column(String(7), nullable=True, comment="标签颜色(十六进制)")
usage_count = Column(BigInteger, default=0, comment="使用次数")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
def __repr__(self):
return f"<Tag(id={self.id}, name={self.name}, category={self.category})>"

View File

@@ -0,0 +1,24 @@
from sqlalchemy import Column, String, BigInteger, Boolean, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
class User(Base):
"""用户模型"""
__tablename__ = "users"
id = Column(BigInteger, primary_key=True, autoincrement=True, comment="用户ID")
username = Column(String(255), nullable=False, unique=True, comment="用户名")
email = Column(String(255), nullable=False, unique=True, comment="邮箱")
password_hash = Column(String(255), nullable=False, comment="密码哈希")
full_name = Column(String(255), nullable=True, comment="真实姓名")
avatar_url = Column(String(500), nullable=True, comment="头像URL")
role = Column(String(50), nullable=False, default='USER', comment="角色:ADMIN/USER")
organization = Column(String(255), nullable=True, comment="所属机构")
enabled = Column(Boolean, nullable=False, default=True, comment="是否启用")
last_login_at = Column(TIMESTAMP, nullable=True, comment="最后登录时间")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
def __repr__(self):
return f"<User(id={self.id}, username={self.username}, role={self.role})>"

View File

@@ -0,0 +1,11 @@
# app/models/operator/__init__.py
from .operator import Operator
from .operator_category import OperatorCategory
from .operator_category_relation import OperatorCategoryRelation
__all__ = [
"Operator",
"OperatorCategory",
"OperatorCategoryRelation"
]

View File

@@ -0,0 +1,24 @@
from sqlalchemy import Column, String, Text, Boolean, TIMESTAMP
from sqlalchemy.sql import func
from app.db.database import Base
class Operator(Base):
"""算子模型"""
__tablename__ = "t_operator"
id = Column(String(64), primary_key=True, comment="算子ID")
name = Column(String(64), nullable=True, comment="算子名称")
description = Column(String(256), nullable=True, comment="算子描述")
version = Column(String(256), nullable=True, comment="版本")
inputs = Column(String(256), nullable=True, comment="输入类型")
outputs = Column(String(256), nullable=True, comment="输出类型")
runtime = Column(Text, nullable=True, comment="运行时信息")
settings = Column(Text, nullable=True, comment="配置信息")
file_name = Column(Text, nullable=True, comment="文件名")
is_star = Column(Boolean, nullable=True, comment="是否收藏")
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
def __repr__(self):
return f"<Operator(id={self.id}, name={self.name}, version={self.version})>"

View File

@@ -0,0 +1,15 @@
from sqlalchemy import Column, String, Integer
from app.db.database import Base
class OperatorCategory(Base):
"""算子分类模型"""
__tablename__ = "t_operator_category"
id = Column(Integer, primary_key=True, autoincrement=True, comment="分类ID")
name = Column(String(64), nullable=True, comment="分类名称")
type = Column(String(64), nullable=True, comment="分类类型")
parent_id = Column(Integer, nullable=True, comment="父分类ID")
def __repr__(self):
return f"<OperatorCategory(id={self.id}, name={self.name}, type={self.type})>"

View File

@@ -0,0 +1,13 @@
from sqlalchemy import Column, String, Integer
from app.db.database import Base
class OperatorCategoryRelation(Base):
"""算子分类关联模型"""
__tablename__ = "t_operator_category_relation"
category_id = Column(Integer, primary_key=True, comment="分类ID")
operator_id = Column(String(64), primary_key=True, comment="算子ID")
def __repr__(self):
return f"<OperatorCategoryRelation(category_id={self.category_id}, operator_id={self.operator_id})>"

View File

@@ -6,7 +6,7 @@ from .common import BaseResponseModel
class DatasetMappingBase(BaseResponseModel):
"""数据集映射 基础模型"""
source_dataset_id: str = Field(..., description="源数据集ID")
dataset_id: str = Field(..., description="源数据集ID")
class DatasetMappingCreateRequest(DatasetMappingBase):
"""数据集映射 创建 请求模型"""
@@ -21,7 +21,7 @@ class DatasetMappingCreateResponse(BaseResponseModel):
class DatasetMappingUpdateRequest(BaseResponseModel):
"""数据集映射 更新 请求模型"""
source_dataset_id: Optional[str] = Field(None, description="源数据集ID")
dataset_id: Optional[str] = Field(None, description="源数据集ID")
class DatasetMappingResponse(DatasetMappingBase):
"""数据集映射 查询 响应模型"""

View File

@@ -5,7 +5,7 @@ from typing import Optional, List, Tuple
from datetime import datetime
import uuid
from app.models.dataset_mapping import DatasetMapping
from app.models.dm.labeling_project import LabelingProject
from app.schemas.dataset_mapping import (
DatasetMappingCreateRequest,
DatasetMappingUpdateRequest,
@@ -28,11 +28,11 @@ class DatasetMappingService:
labelling_project_name: str
) -> DatasetMappingResponse:
"""创建数据集映射"""
logger.info(f"Create dataset mapping: {mapping_data.source_dataset_id} -> {labelling_project_id}")
logger.info(f"Create dataset mapping: {mapping_data.dataset_id} -> {labelling_project_id}")
db_mapping = DatasetMapping(
db_mapping = LabelingProject(
mapping_id=str(uuid.uuid4()),
source_dataset_id=mapping_data.source_dataset_id,
dataset_id=mapping_data.dataset_id,
labelling_project_id=labelling_project_id,
labelling_project_name=labelling_project_name
)
@@ -41,48 +41,48 @@ class DatasetMappingService:
await self.db.commit()
await self.db.refresh(db_mapping)
logger.info(f"Mapping created: {db_mapping.mapping_id}")
logger.info(f"Mapping created: {db_mapping.id}")
return DatasetMappingResponse.model_validate(db_mapping)
async def get_mapping_by_source_uuid(
self,
source_dataset_id: str
dataset_id: str
) -> Optional[DatasetMappingResponse]:
"""根据源数据集ID获取映射(返回第一个未删除的)"""
logger.debug(f"Get mapping by source dataset id: {source_dataset_id}")
logger.debug(f"Get mapping by source dataset id: {dataset_id}")
result = await self.db.execute(
select(DatasetMapping).where(
DatasetMapping.source_dataset_id == source_dataset_id,
DatasetMapping.deleted_at.is_(None)
select(LabelingProject).where(
LabelingProject.dataset_id == dataset_id,
LabelingProject.deleted_at.is_(None)
)
)
mapping = result.scalar_one_or_none()
if mapping:
logger.debug(f"Found mapping: {mapping.mapping_id}")
logger.debug(f"Found mapping: {mapping.id}")
return DatasetMappingResponse.model_validate(mapping)
logger.debug(f"No mapping found for source dataset id: {source_dataset_id}")
logger.debug(f"No mapping found for source dataset id: {dataset_id}")
return None
async def get_mappings_by_source_dataset_id(
async def get_mappings_by_dataset_id(
self,
source_dataset_id: str,
dataset_id: str,
include_deleted: bool = False
) -> List[DatasetMappingResponse]:
"""根据源数据集ID获取所有映射关系"""
logger.debug(f"Get all mappings by source dataset id: {source_dataset_id}")
logger.debug(f"Get all mappings by source dataset id: {dataset_id}")
query = select(DatasetMapping).where(
DatasetMapping.source_dataset_id == source_dataset_id
query = select(LabelingProject).where(
LabelingProject.dataset_id == dataset_id
)
if not include_deleted:
query = query.where(DatasetMapping.deleted_at.is_(None))
query = query.where(LabelingProject.deleted_at.is_(None))
result = await self.db.execute(
query.order_by(DatasetMapping.created_at.desc())
query.order_by(LabelingProject.created_at.desc())
)
mappings = result.scalars().all()
@@ -97,9 +97,9 @@ class DatasetMappingService:
logger.debug(f"Get mapping by Label Studio project id: {labelling_project_id}")
result = await self.db.execute(
select(DatasetMapping).where(
DatasetMapping.labelling_project_id == labelling_project_id,
DatasetMapping.deleted_at.is_(None)
select(LabelingProject).where(
LabelingProject.labeling_project_id == labelling_project_id,
LabelingProject.deleted_at.is_(None)
)
)
mapping = result.scalar_one_or_none()
@@ -116,15 +116,15 @@ class DatasetMappingService:
logger.debug(f"Get mapping: {mapping_id}")
result = await self.db.execute(
select(DatasetMapping).where(
DatasetMapping.mapping_id == mapping_id,
DatasetMapping.deleted_at.is_(None)
select(LabelingProject).where(
LabelingProject.id == mapping_id,
LabelingProject.deleted_at.is_(None)
)
)
mapping = result.scalar_one_or_none()
if mapping:
logger.debug(f"Found mapping: {mapping.mapping_id}")
logger.debug(f"Found mapping: {mapping.id}")
return DatasetMappingResponse.model_validate(mapping)
logger.debug(f"Mapping not found: {mapping_id}")
@@ -143,11 +143,11 @@ class DatasetMappingService:
return None
update_values = update_data.model_dump(exclude_unset=True)
update_values["last_updated_at"] = datetime.utcnow()
update_values["last_updated_at"] = datetime.now()
result = await self.db.execute(
update(DatasetMapping)
.where(DatasetMapping.mapping_id == mapping_id)
update(LabelingProject)
.where(LabelingProject.id == mapping_id)
.values(**update_values)
)
await self.db.commit()
@@ -161,10 +161,10 @@ class DatasetMappingService:
logger.debug(f"Update mapping last updated at: {mapping_id}")
result = await self.db.execute(
update(DatasetMapping)
update(LabelingProject)
.where(
DatasetMapping.mapping_id == mapping_id,
DatasetMapping.deleted_at.is_(None)
LabelingProject.id == mapping_id,
LabelingProject.deleted_at.is_(None)
)
.values(last_updated_at=datetime.utcnow())
)
@@ -176,12 +176,12 @@ class DatasetMappingService:
logger.info(f"Soft delete mapping: {mapping_id}")
result = await self.db.execute(
update(DatasetMapping)
update(LabelingProject)
.where(
DatasetMapping.mapping_id == mapping_id,
DatasetMapping.deleted_at.is_(None)
LabelingProject.id == mapping_id,
LabelingProject.deleted_at.is_(None)
)
.values(deleted_at=datetime.utcnow())
.values(deleted_at=datetime.now())
)
await self.db.commit()
@@ -202,11 +202,11 @@ class DatasetMappingService:
logger.debug(f"List all mappings, skip: {skip}, limit: {limit}")
result = await self.db.execute(
select(DatasetMapping)
.where(DatasetMapping.deleted_at.is_(None))
select(LabelingProject)
.where(LabelingProject.deleted_at.is_(None))
.offset(skip)
.limit(limit)
.order_by(DatasetMapping.created_at.desc())
.order_by(LabelingProject.created_at.desc())
)
mappings = result.scalars().all()
@@ -215,10 +215,10 @@ class DatasetMappingService:
async def count_mappings(self, include_deleted: bool = False) -> int:
"""统计映射总数"""
query = select(func.count()).select_from(DatasetMapping)
query = select(func.count()).select_from(LabelingProject)
if not include_deleted:
query = query.where(DatasetMapping.deleted_at.is_(None))
query = query.where(LabelingProject.deleted_at.is_(None))
result = await self.db.execute(query)
return result.scalar_one()
@@ -233,14 +233,14 @@ class DatasetMappingService:
logger.debug(f"List all mappings with count, skip: {skip}, limit: {limit}")
# 构建查询
query = select(DatasetMapping)
query = select(LabelingProject)
if not include_deleted:
query = query.where(DatasetMapping.deleted_at.is_(None))
query = query.where(LabelingProject.deleted_at.is_(None))
# 获取总数
count_query = select(func.count()).select_from(DatasetMapping)
count_query = select(func.count()).select_from(LabelingProject)
if not include_deleted:
count_query = count_query.where(DatasetMapping.deleted_at.is_(None))
count_query = count_query.where(LabelingProject.deleted_at.is_(None))
count_result = await self.db.execute(count_query)
total = count_result.scalar_one()
@@ -250,7 +250,7 @@ class DatasetMappingService:
query
.offset(skip)
.limit(limit)
.order_by(DatasetMapping.created_at.desc())
.order_by(LabelingProject.created_at.desc())
)
mappings = result.scalars().all()
@@ -259,28 +259,28 @@ class DatasetMappingService:
async def get_mappings_by_source_with_count(
self,
source_dataset_id: str,
dataset_id: str,
skip: int = 0,
limit: int = 100,
include_deleted: bool = False
) -> Tuple[List[DatasetMappingResponse], int]:
"""根据源数据集ID获取映射关系及总数(用于分页)"""
logger.debug(f"Get mappings by source dataset id with count: {source_dataset_id}")
logger.debug(f"Get mappings by source dataset id with count: {dataset_id}")
# 构建查询
query = select(DatasetMapping).where(
DatasetMapping.source_dataset_id == source_dataset_id
query = select(LabelingProject).where(
LabelingProject.dataset_id == dataset_id
)
if not include_deleted:
query = query.where(DatasetMapping.deleted_at.is_(None))
query = query.where(LabelingProject.deleted_at.is_(None))
# 获取总数
count_query = select(func.count()).select_from(DatasetMapping).where(
DatasetMapping.source_dataset_id == source_dataset_id
count_query = select(func.count()).select_from(LabelingProject).where(
LabelingProject.dataset_id == dataset_id
)
if not include_deleted:
count_query = count_query.where(DatasetMapping.deleted_at.is_(None))
count_query = count_query.where(LabelingProject.deleted_at.is_(None))
count_result = await self.db.execute(count_query)
total = count_result.scalar_one()
@@ -290,7 +290,7 @@ class DatasetMappingService:
query
.offset(skip)
.limit(limit)
.order_by(DatasetMapping.created_at.desc())
.order_by(LabelingProject.created_at.desc())
)
mappings = result.scalars().all()

View File

@@ -1,6 +1,5 @@
from typing import Optional, List, Dict, Any, Tuple
from app.clients.dm_client import DMServiceClient
from app.clients.label_studio_client import LabelStudioClient
from app.infrastructure import LabelStudioClient, DatamateClient
from app.services.dataset_mapping_service import DatasetMappingService
from app.schemas.dataset_mapping import SyncDatasetResponse
from app.core.logging import get_logger
@@ -14,7 +13,7 @@ class SyncService:
def __init__(
self,
dm_client: DMServiceClient,
dm_client: DatamateClient,
ls_client: LabelStudioClient,
mapping_service: DatasetMappingService
):
@@ -107,9 +106,9 @@ class SyncService:
try:
# 获取数据集信息
dataset_info = await self.dm_client.get_dataset(mapping.source_dataset_id)
dataset_info = await self.dm_client.get_dataset(mapping.dataset_id)
if not dataset_info:
raise NoDatasetInfoFoundError(mapping.source_dataset_id)
raise NoDatasetInfoFoundError(mapping.dataset_id)
synced_files = 0
deleted_tasks = 0
@@ -129,7 +128,7 @@ class SyncService:
# 分页获取并同步文件
while True:
files_response = await self.dm_client.get_dataset_files(
mapping.source_dataset_id,
mapping.dataset_id,
page=page,
size=batch_size,
status="COMPLETED" # 只同步已完成的文件
@@ -173,7 +172,7 @@ class SyncService:
"meta": {
"file_size": file_info.size,
"file_type": file_info.fileType,
"dm_dataset_id": mapping.source_dataset_id,
"dm_dataset_id": mapping.dataset_id,
"dm_file_id": file_info.id,
"original_name": file_info.originalName,
}
@@ -249,22 +248,22 @@ class SyncService:
async def get_sync_status(
self,
source_dataset_id: str
dataset_id: str
) -> Optional[Dict[str, Any]]:
"""获取同步状态"""
mapping = await self.mapping_service.get_mapping_by_source_uuid(source_dataset_id)
mapping = await self.mapping_service.get_mapping_by_source_uuid(dataset_id)
if not mapping:
return None
# 获取DM数据集信息
dataset_info = await self.dm_client.get_dataset(source_dataset_id)
dataset_info = await self.dm_client.get_dataset(dataset_id)
# 获取Label Studio项目任务数量
tasks_info = await self.ls_client.get_project_tasks(mapping.labelling_project_id)
return {
"mapping_id": mapping.mapping_id,
"source_dataset_id": source_dataset_id,
"dataset_id": dataset_id,
"labelling_project_id": mapping.labelling_project_id,
"last_updated_at": mapping.last_updated_at,
"dm_total_files": dataset_info.fileCount if dataset_info else 0,

View File

@@ -0,0 +1,5 @@
uvicorn app.main:app \
--host 0.0.0.0 \
--port 18000 \
--reload \
--log-level debug

View File

@@ -1,148 +0,0 @@
# A generic, single database configuration.
[alembic]
# path to migration scripts.
# this is typically a path given in POSIX (e.g. forward slashes)
# format, relative to the token %(here)s which refers to the location of this
# ini file
script_location = %(here)s/alembic
# template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
# Uncomment the line below if you want the files to be prepended with date and time
# see https://alembic.sqlalchemy.org/en/latest/tutorial.html#editing-the-ini-file
# for all available tokens
# file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s
# sys.path path, will be prepended to sys.path if present.
# defaults to the current working directory. for multiple paths, the path separator
# is defined by "path_separator" below.
prepend_sys_path = .
# timezone to use when rendering the date within the migration file
# as well as the filename.
# If specified, requires the python>=3.9 or backports.zoneinfo library and tzdata library.
# Any required deps can installed by adding `alembic[tz]` to the pip requirements
# string value is passed to ZoneInfo()
# leave blank for localtime
# timezone =
# max length of characters to apply to the "slug" field
# truncate_slug_length = 40
# set to 'true' to run the environment during
# the 'revision' command, regardless of autogenerate
# revision_environment = false
# set to 'true' to allow .pyc and .pyo files without
# a source .py file to be detected as revisions in the
# versions/ directory
# sourceless = false
# version location specification; This defaults
# to <script_location>/versions. When using multiple version
# directories, initial revisions must be specified with --version-path.
# The path separator used here should be the separator specified by "path_separator"
# below.
# version_locations = %(here)s/bar:%(here)s/bat:%(here)s/alembic/versions
# path_separator; This indicates what character is used to split lists of file
# paths, including version_locations and prepend_sys_path within configparser
# files such as alembic.ini.
# The default rendered in new alembic.ini files is "os", which uses os.pathsep
# to provide os-dependent path splitting.
#
# Note that in order to support legacy alembic.ini files, this default does NOT
# take place if path_separator is not present in alembic.ini. If this
# option is omitted entirely, fallback logic is as follows:
#
# 1. Parsing of the version_locations option falls back to using the legacy
# "version_path_separator" key, which if absent then falls back to the legacy
# behavior of splitting on spaces and/or commas.
# 2. Parsing of the prepend_sys_path option falls back to the legacy
# behavior of splitting on spaces, commas, or colons.
#
# Valid values for path_separator are:
#
# path_separator = :
# path_separator = ;
# path_separator = space
# path_separator = newline
#
# Use os.pathsep. Default configuration used for new projects.
path_separator = os
# set to 'true' to search source files recursively
# in each "version_locations" directory
# new in Alembic version 1.10
# recursive_version_locations = false
# the output encoding used when revision files
# are written from script.py.mako
# output_encoding = utf-8
# database URL. This is consumed by the user-maintained env.py script only.
# other means of configuring database URLs may be customized within the env.py
# file.
# sqlalchemy.url = driver://user:pass@localhost/dbname
# 注释掉默认 URL,我们将在 env.py 中从应用配置读取
[post_write_hooks]
# post_write_hooks defines scripts or Python functions that are run
# on newly generated revision scripts. See the documentation for further
# detail and examples
# format using "black" - use the console_scripts runner, against the "black" entrypoint
# hooks = black
# black.type = console_scripts
# black.entrypoint = black
# black.options = -l 79 REVISION_SCRIPT_FILENAME
# lint with attempts to fix using "ruff" - use the module runner, against the "ruff" module
# hooks = ruff
# ruff.type = module
# ruff.module = ruff
# ruff.options = check --fix REVISION_SCRIPT_FILENAME
# Alternatively, use the exec runner to execute a binary found on your PATH
# hooks = ruff
# ruff.type = exec
# ruff.executable = ruff
# ruff.options = check --fix REVISION_SCRIPT_FILENAME
# Logging configuration. This is also consumed by the user-maintained
# env.py script only.
[loggers]
keys = root,sqlalchemy,alembic
[handlers]
keys = console
[formatters]
keys = generic
[logger_root]
level = WARNING
handlers = console
qualname =
[logger_sqlalchemy]
level = WARNING
handlers =
qualname = sqlalchemy.engine
[logger_alembic]
level = INFO
handlers =
qualname = alembic
[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic
[formatter_generic]
format = %(levelname)-5.5s [%(name)s] %(message)s
datefmt = %H:%M:%S

View File

@@ -1 +0,0 @@
Generic single-database configuration.

View File

@@ -1,145 +0,0 @@
from logging.config import fileConfig
from sqlalchemy import engine_from_config
from sqlalchemy import pool
from sqlalchemy import create_engine, text
from alembic import context
import os
from urllib.parse import quote_plus
# 导入应用配置和模型
from app.core.config import settings
from app.db.database import Base
# 导入所有模型,以便 autogenerate 能够检测到它们
from app.models import dataset_mapping # noqa
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
def ensure_database_and_user():
"""
确保数据库和用户存在
使用 root 用户连接 MySQL,创建数据库和应用用户
"""
# 只在 MySQL 配置时执行
if not settings.mysql_host:
return
mysql_root_password = os.getenv('MYSQL_ROOT_PASSWORD', 'password')
# URL 编码密码以处理特殊字符
encoded_password = quote_plus(mysql_root_password)
# 使用 root 用户连接(不指定数据库)
root_url = f"mysql+pymysql://root:{encoded_password}@{settings.mysql_host}:{settings.mysql_port}/"
try:
root_engine = create_engine(root_url, poolclass=pool.NullPool)
with root_engine.connect() as conn:
# 创建数据库(如果不存在)
conn.execute(text(
f"CREATE DATABASE IF NOT EXISTS `{settings.mysql_database}` "
f"CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci"
))
conn.commit()
# 创建用户(如果不存在)- 使用 MySQL 8 默认的 caching_sha2_password
conn.execute(text(
f"CREATE USER IF NOT EXISTS '{settings.mysql_user}'@'%' "
f"IDENTIFIED BY '{settings.mysql_password}'"
))
conn.commit()
# 授予权限
conn.execute(text(
f"GRANT ALL PRIVILEGES ON `{settings.mysql_database}`.* TO '{settings.mysql_user}'@'%'"
))
conn.commit()
# 刷新权限
conn.execute(text("FLUSH PRIVILEGES"))
conn.commit()
root_engine.dispose()
print(f"✓ Database '{settings.mysql_database}' and user '{settings.mysql_user}' are ready")
except Exception as e:
print(f"⚠️ Warning: Could not ensure database and user: {e}")
print(f" This may be expected if database already exists or permissions are set")
# 从应用配置设置数据库 URL
config.set_main_option('sqlalchemy.url', settings.sync_database_url)
# Interpret the config file for Python logging.
# This line sets up loggers basically.
if config.config_file_name is not None:
fileConfig(config.config_file_name)
# add your model's MetaData object here
# for 'autogenerate' support
# from myapp import mymodel
# target_metadata = mymodel.Base.metadata
target_metadata = Base.metadata
# other values from the config, defined by the needs of env.py,
# can be acquired:
# my_important_option = config.get_main_option("my_important_option")
# ... etc.
def run_migrations_offline() -> None:
"""Run migrations in 'offline' mode.
This configures the context with just a URL
and not an Engine, though an Engine is acceptable
here as well. By skipping the Engine creation
we don't even need a DBAPI to be available.
Calls to context.execute() here emit the given string to the
script output.
"""
url = config.get_main_option("sqlalchemy.url")
context.configure(
url=url,
target_metadata=target_metadata,
literal_binds=True,
dialect_opts={"paramstyle": "named"},
)
with context.begin_transaction():
context.run_migrations()
def run_migrations_online() -> None:
"""Run migrations in 'online' mode.
In this scenario we need to create an Engine
and associate a connection with the context.
"""
# 先确保数据库和用户存在
ensure_database_and_user()
connectable = engine_from_config(
config.get_section(config.config_ini_section, {}),
prefix="sqlalchemy.",
poolclass=pool.NullPool,
)
with connectable.connect() as connection:
context.configure(
connection=connection, target_metadata=target_metadata
)
with context.begin_transaction():
context.run_migrations()
if context.is_offline_mode():
run_migrations_offline()
else:
run_migrations_online()

View File

@@ -1,28 +0,0 @@
"""${message}
Revision ID: ${up_revision}
Revises: ${down_revision | comma,n}
Create Date: ${create_date}
"""
from typing import Sequence, Union
from alembic import op
import sqlalchemy as sa
${imports if imports else ""}
# revision identifiers, used by Alembic.
revision: str = ${repr(up_revision)}
down_revision: Union[str, Sequence[str], None] = ${repr(down_revision)}
branch_labels: Union[str, Sequence[str], None] = ${repr(branch_labels)}
depends_on: Union[str, Sequence[str], None] = ${repr(depends_on)}
def upgrade() -> None:
"""Upgrade schema."""
${upgrades if upgrades else "pass"}
def downgrade() -> None:
"""Downgrade schema."""
${downgrades if downgrades else "pass"}

View File

@@ -1,41 +0,0 @@
"""Initiation
Revision ID: 755dc1afb8ad
Revises:
Create Date: 2025-10-20 19:34:20.258554
"""
from typing import Sequence, Union
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision: str = '755dc1afb8ad'
down_revision: Union[str, Sequence[str], None] = None
branch_labels: Union[str, Sequence[str], None] = None
depends_on: Union[str, Sequence[str], None] = None
def upgrade() -> None:
"""Upgrade schema."""
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('mapping',
sa.Column('mapping_id', sa.String(length=36), nullable=False),
sa.Column('source_dataset_id', sa.String(length=36), nullable=False, comment='源数据集ID'),
sa.Column('labelling_project_id', sa.String(length=36), nullable=False, comment='标注项目ID'),
sa.Column('labelling_project_name', sa.String(length=255), nullable=True, comment='标注项目名称'),
sa.Column('created_at', sa.DateTime(timezone=True), server_default=sa.text('now()'), nullable=True, comment='创建时间'),
sa.Column('last_updated_at', sa.DateTime(timezone=True), server_default=sa.text('now()'), nullable=True, comment='最后更新时间'),
sa.Column('deleted_at', sa.DateTime(timezone=True), nullable=True, comment='删除时间'),
sa.PrimaryKeyConstraint('mapping_id')
)
# ### end Alembic commands ###
def downgrade() -> None:
"""Downgrade schema."""
# ### commands auto generated by Alembic - please adjust! ###
op.drop_table('mapping')
# ### end Alembic commands ###

View File

@@ -1,8 +0,0 @@
# app/clients/__init__.py
from .dm_client import DMServiceClient
from .label_studio_client import LabelStudioClient
from .client_manager import get_clients, set_clients, get_dm_client, get_ls_client
__all__ = ["DMServiceClient", "LabelStudioClient", "get_clients", "set_clients", "get_dm_client", "get_ls_client"]

View File

@@ -1,34 +0,0 @@
from typing import Optional
from fastapi import HTTPException
from .dm_client import DMServiceClient
from .label_studio_client import LabelStudioClient
# 全局客户端实例(将在main.py中初始化)
dm_client: Optional[DMServiceClient] = None
ls_client: Optional[LabelStudioClient] = None
def get_clients() -> tuple[DMServiceClient, LabelStudioClient]:
"""获取客户端实例"""
global dm_client, ls_client
if not dm_client or not ls_client:
raise HTTPException(status_code=500, detail="客户端未初始化")
return dm_client, ls_client
def set_clients(dm_client_instance: DMServiceClient, ls_client_instance: LabelStudioClient) -> None:
"""设置全局客户端实例"""
global dm_client, ls_client
dm_client = dm_client_instance
ls_client = ls_client_instance
def get_dm_client() -> DMServiceClient:
"""获取DM服务客户端"""
if not dm_client:
raise HTTPException(status_code=500, detail="DM客户端未初始化")
return dm_client
def get_ls_client() -> LabelStudioClient:
"""获取Label Studio客户端"""
if not ls_client:
raise HTTPException(status_code=500, detail="Label Studio客户端未初始化")
return ls_client

View File

@@ -1,138 +0,0 @@
import httpx
from typing import Optional
from app.core.config import settings
from app.core.logging import get_logger
from app.schemas.dm_service import DatasetResponse, PagedDatasetFileResponse
logger = get_logger(__name__)
class DMServiceClient:
"""数据管理服务客户端"""
def __init__(self, base_url: str|None = None, timeout: float = 30.0):
self.base_url = base_url or settings.dm_service_base_url
self.timeout = timeout
self.client = httpx.AsyncClient(
base_url=self.base_url,
timeout=self.timeout
)
logger.info(f"Initialize DM service client, base url: {self.base_url}")
@staticmethod
def _unwrap_payload(data):
"""Unwrap common envelope shapes like {'code': ..., 'message': ..., 'data': {...}}."""
if isinstance(data, dict) and 'data' in data and isinstance(data['data'], (dict, list)):
return data['data']
return data
@staticmethod
def _is_error_payload(data) -> bool:
"""Detect error-shaped payloads returned with HTTP 200."""
if not isinstance(data, dict):
return False
# Common patterns: {error, message, ...} or {code, message, ...} without data
if 'error' in data and 'message' in data:
return True
if 'code' in data and 'message' in data and 'data' not in data:
return True
return False
@staticmethod
def _keys(d):
return list(d.keys()) if isinstance(d, dict) else []
async def get_dataset(self, dataset_id: str) -> Optional[DatasetResponse]:
"""获取数据集详情"""
try:
logger.info(f"Getting dataset detail: {dataset_id} ...")
response = await self.client.get(f"/data-management/datasets/{dataset_id}")
response.raise_for_status()
raw = response.json()
data = self._unwrap_payload(raw)
if self._is_error_payload(data):
logger.error(f"DM service returned error for dataset {dataset_id}: {data}")
return None
if not isinstance(data, dict):
logger.error(f"Unexpected dataset payload type for {dataset_id}: {type(data).__name__}")
return None
required = ["id", "name", "description", "datasetType", "status", "fileCount", "totalSize"]
if not all(k in data for k in required):
logger.error(f"Dataset payload missing required fields for {dataset_id}. Keys: {self._keys(data)}")
return None
return DatasetResponse(**data)
except httpx.HTTPError as e:
logger.error(f"Failed to get dataset {dataset_id}: {e}")
return None
except Exception as e:
logger.error(f"[Unexpected] [GET] dataset {dataset_id}: \n{e}\nRaw JSON received: \n{raw}")
return None
async def get_dataset_files(
self,
dataset_id: str,
page: int = 0,
size: int = 100,
file_type: Optional[str] = None,
status: Optional[str] = None
) -> Optional[PagedDatasetFileResponse]:
"""获取数据集文件列表"""
try:
logger.info(f"Get dataset files: dataset={dataset_id}, page={page}, size={size}")
params: dict = {"page": page, "size": size}
if file_type:
params["fileType"] = file_type
if status:
params["status"] = status
response = await self.client.get(
f"/data-management/datasets/{dataset_id}/files",
params=params
)
response.raise_for_status()
raw = response.json()
data = self._unwrap_payload(raw)
if self._is_error_payload(data):
logger.error(f"DM service returned error for dataset files {dataset_id}: {data}")
return None
if not isinstance(data, dict):
logger.error(f"Unexpected dataset files payload type for {dataset_id}: {type(data).__name__}")
return None
required = ["content", "totalElements", "totalPages", "page", "size"]
if not all(k in data for k in required):
logger.error(f"Files payload missing required fields for {dataset_id}. Keys: {self._keys(data)}")
return None
return PagedDatasetFileResponse(**data)
except httpx.HTTPError as e:
logger.error(f"Failed to get dataset files for {dataset_id}: {e}")
return None
except Exception as e:
logger.error(f"[Unexpected] [GET] dataset files {dataset_id}: \n{e}\nRaw JSON received: \n{raw}")
return None
async def download_file(self, dataset_id: str, file_id: str) -> Optional[bytes]:
"""下载文件内容"""
try:
logger.info(f"Download file: dataset={dataset_id}, file={file_id}")
response = await self.client.get(
f"/data-management/datasets/{dataset_id}/files/{file_id}/download"
)
response.raise_for_status()
return response.content
except httpx.HTTPError as e:
logger.error(f"Failed to download file {file_id}: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error while downloading file {file_id}: {e}")
return None
async def get_file_download_url(self, dataset_id: str, file_id: str) -> str:
"""获取文件下载URL"""
return f"{self.base_url}/data-management/datasets/{dataset_id}/files/{file_id}/download"
async def close(self):
"""关闭客户端连接"""
await self.client.aclose()
logger.info("DM service client connection closed")

View File

@@ -1,5 +0,0 @@
# app/models/__init__.py
from .dataset_mapping import DatasetMapping
__all__ = ["DatasetMapping"]

View File

@@ -1,25 +0,0 @@
from sqlalchemy import Column, String, DateTime, Boolean, Text
from sqlalchemy.sql import func
from app.db.database import Base
import uuid
class DatasetMapping(Base):
"""数据集映射模型"""
__tablename__ = "mapping"
mapping_id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()))
source_dataset_id = Column(String(36), nullable=False, comment="源数据集ID")
labelling_project_id = Column(String(36), nullable=False, comment="标注项目ID")
labelling_project_name = Column(String(255), nullable=True, comment="标注项目名称")
created_at = Column(DateTime(timezone=True), server_default=func.now(), comment="创建时间")
last_updated_at = Column(DateTime(timezone=True), server_default=func.now(), onupdate=func.now(), comment="最后更新时间")
deleted_at = Column(DateTime(timezone=True), nullable=True, comment="删除时间")
def __repr__(self):
return f"<DatasetMapping(uuid={self.mapping_id}, source={self.source_dataset_id}, labelling={self.labelling_project_id})>"
@property
def is_deleted(self) -> bool:
"""检查是否已被软删除"""
return self.deleted_at is not None