You've already forked DataMate
Merge branch 'main' into develop_deer
This commit is contained in:
@@ -53,9 +53,6 @@ LS_TASK_PAGE_SIZE=1000
|
||||
# =========================
|
||||
# Data Management 服务配置
|
||||
# =========================
|
||||
# DM 服务地址
|
||||
DM_SERVICE_BASE_URL=http://data-engine:8080
|
||||
|
||||
# DM 存储文件夹前缀(通常与 Label Studio 的 local-files 文件夹映射一致)
|
||||
DM_FILE_PATH_PREFIX=/
|
||||
|
||||
86
runtime/datamate-python/README.md
Normal file
86
runtime/datamate-python/README.md
Normal file
@@ -0,0 +1,86 @@
|
||||
# Label Studio Adapter (DataMate)
|
||||
|
||||
这是 DataMate 的 Label Studio Adapter 服务,负责将 DataMate 的项目与 Label Studio 同步并提供对外的 HTTP API(基于 FastAPI)。
|
||||
|
||||
## 简要说明
|
||||
|
||||
- 框架:FastAPI
|
||||
- 异步数据库/ORM:SQLAlchemy (async)
|
||||
- 数据库迁移:Alembic
|
||||
- 运行器:uvicorn
|
||||
|
||||
## 快速开始(开发)
|
||||
|
||||
1. 克隆仓库并进入项目目录
|
||||
2. 创建并激活虚拟环境:
|
||||
|
||||
```bash
|
||||
python -m venv .venv
|
||||
source .venv/bin/activate
|
||||
```
|
||||
|
||||
3. 安装依赖:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
4. 准备环境变量(示例)
|
||||
|
||||
创建 `.env` 并设置必要的变量,例如:
|
||||
|
||||
- DATABASE_URL(或根据项目配置使用具体变量)
|
||||
- LABEL_STUDIO_BASE_URL
|
||||
- LABEL_STUDIO_USER_TOKEN
|
||||
|
||||
(具体变量请参考 `.env.example`)
|
||||
|
||||
5. 数据库迁移(开发环境):
|
||||
|
||||
```bash
|
||||
alembic upgrade head
|
||||
```
|
||||
|
||||
6. 启动开发服务器(示例与常用参数):
|
||||
|
||||
- 本地开发(默认 host/port,自动重载):
|
||||
|
||||
```bash
|
||||
uvicorn app.main:app --reload
|
||||
```
|
||||
|
||||
- 指定主机与端口并打开调试日志:
|
||||
|
||||
```bash
|
||||
uvicorn app.main:app --host 0.0.0.0 --port 8000 --reload --log-level debug
|
||||
```
|
||||
|
||||
- 在生产环境使用多个 worker(不使用 --reload):
|
||||
|
||||
```bash
|
||||
uvicorn app.main:app --host 0.0.0.0 --port 8000 --workers 4 --log-level info --proxy-headers
|
||||
```
|
||||
|
||||
- 使用环境变量启动(示例):
|
||||
|
||||
```bash
|
||||
HOST=0.0.0.0 PORT=8000 uvicorn app.main:app --reload
|
||||
```
|
||||
|
||||
注意:
|
||||
|
||||
- `--reload` 仅用于开发,会监视文件变化并重启进程;不要在生产中使用。
|
||||
- `--workers` 提供并发处理能力,但会增加内存占用;生产时通常配合进程管理或容器编排(Kubernetes)使用。
|
||||
- 若需要完整的生产部署建议使用 ASGI 服务器(如 gunicorn + uvicorn workers / 或直接使用 uvicorn 在容器中配合进程管理)。
|
||||
|
||||
访问 API 文档:
|
||||
|
||||
- Swagger UI: http://127.0.0.1:8000/docs
|
||||
- ReDoc: http://127.0.0.1:8000/redoc (推荐使用)
|
||||
|
||||
## 使用(简要)
|
||||
|
||||
- 所有 API 路径以 `/api` 前缀注册(见 `app/main.py` 中 `app.include_router(api_router, prefix="/api")`)。
|
||||
- 根路径 `/` 返回服务信息和文档链接。
|
||||
|
||||
更多细节请查看 `doc/usage.md`(接口使用)和 `doc/development.md`(开发说明)。
|
||||
@@ -4,7 +4,7 @@ from typing import Optional
|
||||
|
||||
from app.db.database import get_db
|
||||
from app.services.dataset_mapping_service import DatasetMappingService
|
||||
from app.clients import get_clients
|
||||
from app.infrastructure import DatamateClient, LabelStudioClient
|
||||
from app.schemas.dataset_mapping import (
|
||||
DatasetMappingCreateRequest,
|
||||
DatasetMappingCreateResponse,
|
||||
@@ -30,18 +30,19 @@ async def create_dataset_mapping(
|
||||
注意:一个数据集可以创建多个标注项目
|
||||
"""
|
||||
try:
|
||||
# 获取全局客户端实例
|
||||
dm_client_instance, ls_client_instance = get_clients()
|
||||
dm_client = DatamateClient(db)
|
||||
ls_client = LabelStudioClient(base_url=settings.label_studio_base_url,
|
||||
token=settings.label_studio_user_token)
|
||||
service = DatasetMappingService(db)
|
||||
|
||||
logger.info(f"Create dataset mapping request: {request.source_dataset_id}")
|
||||
logger.info(f"Create dataset mapping request: {request.dataset_id}")
|
||||
|
||||
# 从DM服务获取数据集信息
|
||||
dataset_info = await dm_client_instance.get_dataset(request.source_dataset_id)
|
||||
dataset_info = await dm_client.get_dataset(request.dataset_id)
|
||||
if not dataset_info:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=f"Dataset not found in DM service: {request.source_dataset_id}"
|
||||
detail=f"Dataset not found in DM service: {request.dataset_id}"
|
||||
)
|
||||
|
||||
# 确定数据类型(基于数据集类型)
|
||||
@@ -55,11 +56,10 @@ async def create_dataset_mapping(
|
||||
elif "text" in type_code:
|
||||
data_type = "text"
|
||||
|
||||
# 生成项目名称
|
||||
project_name = f"{dataset_info.name}"
|
||||
|
||||
# 在Label Studio中创建项目
|
||||
project_data = await ls_client_instance.create_project(
|
||||
project_data = await ls_client.create_project(
|
||||
title=project_name,
|
||||
description=dataset_info.description or f"Imported from DM dataset {dataset_info.id}",
|
||||
data_type=data_type
|
||||
@@ -74,8 +74,8 @@ async def create_dataset_mapping(
|
||||
project_id = project_data["id"]
|
||||
|
||||
# 配置本地存储:dataset/<id>
|
||||
local_storage_path = f"{settings.label_studio_local_storage_dataset_base_path}/{request.source_dataset_id}"
|
||||
storage_result = await ls_client_instance.create_local_storage(
|
||||
local_storage_path = f"{settings.label_studio_local_storage_dataset_base_path}/{request.dataset_id}"
|
||||
storage_result = await ls_client.create_local_storage(
|
||||
project_id=project_id,
|
||||
path=local_storage_path,
|
||||
title="Dataset_BLOB",
|
||||
@@ -85,7 +85,7 @@ async def create_dataset_mapping(
|
||||
|
||||
# 配置本地存储:upload
|
||||
local_storage_path = f"{settings.label_studio_local_storage_upload_base_path}"
|
||||
storage_result = await ls_client_instance.create_local_storage(
|
||||
storage_result = await ls_client.create_local_storage(
|
||||
project_id=project_id,
|
||||
path=local_storage_path,
|
||||
title="Upload_BLOB",
|
||||
@@ -107,7 +107,7 @@ async def create_dataset_mapping(
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Dataset mapping created: {mapping.mapping_id} -> S {mapping.source_dataset_id} <> L {mapping.labelling_project_id}"
|
||||
f"Dataset mapping created: {mapping.mapping_id} -> S {mapping.dataset_id} <> L {mapping.labelling_project_id}"
|
||||
)
|
||||
|
||||
response_data = DatasetMappingCreateResponse(
|
||||
@@ -1,13 +1,15 @@
|
||||
from fastapi import APIRouter, Depends, HTTPException, Query
|
||||
from fastapi import Depends, HTTPException, Query
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
from typing import Optional
|
||||
|
||||
from app.db.database import get_db
|
||||
from app.services.dataset_mapping_service import DatasetMappingService
|
||||
from app.clients import get_clients
|
||||
from app.infrastructure import DatamateClient, LabelStudioClient
|
||||
from app.schemas.dataset_mapping import DeleteDatasetResponse
|
||||
from app.schemas import StandardResponse
|
||||
from app.core.logging import get_logger
|
||||
from app.core.config import settings
|
||||
|
||||
from . import project_router
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -37,39 +39,39 @@ async def delete_mapping(
|
||||
status_code=400,
|
||||
detail="Either 'm' (mapping UUID) or 'proj' (project ID) must be provided"
|
||||
)
|
||||
|
||||
# 获取全局客户端实例
|
||||
dm_client_instance, ls_client_instance = get_clients()
|
||||
|
||||
ls_client = LabelStudioClient(base_url=settings.label_studio_base_url,
|
||||
token=settings.label_studio_user_token)
|
||||
service = DatasetMappingService(db)
|
||||
|
||||
mapping = None
|
||||
|
||||
# 优先使用 mapping_id 查询
|
||||
if m:
|
||||
logger.info(f"Deleting by mapping UUID: {m}")
|
||||
logger.debug(f"Deleting by mapping UUID: {m}")
|
||||
mapping = await service.get_mapping_by_uuid(m)
|
||||
# 如果没有提供 m,使用 proj 查询
|
||||
elif proj:
|
||||
logger.info(f"Deleting by project ID: {proj}")
|
||||
logger.debug(f"Deleting by project ID: {proj}")
|
||||
mapping = await service.get_mapping_by_labelling_project_id(proj)
|
||||
else:
|
||||
mapping = None
|
||||
|
||||
if not mapping:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=f"Mapping not found"
|
||||
detail=f"Mapping either not found or not specified."
|
||||
)
|
||||
|
||||
mapping_id = mapping.mapping_id
|
||||
labelling_project_id = mapping.labelling_project_id
|
||||
labelling_project_name = mapping.labelling_project_name
|
||||
|
||||
logger.info(f"Found mapping: {mapping_id}, Label Studio project ID: {labelling_project_id}")
|
||||
logger.debug(f"Found mapping: {mapping_id}, Label Studio project ID: {labelling_project_id}")
|
||||
|
||||
# 1. 删除 Label Studio 项目
|
||||
try:
|
||||
delete_success = await ls_client_instance.delete_project(int(labelling_project_id))
|
||||
delete_success = await ls_client.delete_project(int(labelling_project_id))
|
||||
if delete_success:
|
||||
logger.info(f"Successfully deleted Label Studio project: {labelling_project_id}")
|
||||
logger.debug(f"Successfully deleted Label Studio project: {labelling_project_id}")
|
||||
else:
|
||||
logger.warning(f"Failed to delete Label Studio project or project not found: {labelling_project_id}")
|
||||
except Exception as e:
|
||||
@@ -84,19 +86,17 @@ async def delete_mapping(
|
||||
status_code=500,
|
||||
detail="Failed to delete mapping record"
|
||||
)
|
||||
|
||||
logger.info(f"Successfully deleted mapping: {mapping_id}")
|
||||
|
||||
response_data = DeleteDatasetResponse(
|
||||
mapping_id=mapping_id,
|
||||
status="success",
|
||||
message=f"Successfully deleted mapping and Label Studio project '{labelling_project_name}'"
|
||||
)
|
||||
|
||||
|
||||
logger.info(f"Successfully deleted mapping: {mapping_id}, Label Studio project: {labelling_project_id}")
|
||||
|
||||
return StandardResponse(
|
||||
code=200,
|
||||
message="success",
|
||||
data=response_data
|
||||
data=DeleteDatasetResponse(
|
||||
mapping_id=mapping_id,
|
||||
status="success",
|
||||
message=f"Successfully deleted mapping and Label Studio project '{labelling_project_name}'"
|
||||
)
|
||||
)
|
||||
|
||||
except HTTPException:
|
||||
@@ -98,9 +98,9 @@ async def get_mapping(
|
||||
raise HTTPException(status_code=500, detail="Internal server error")
|
||||
|
||||
|
||||
@project_router.get("/mappings/by-source/{source_dataset_id}", response_model=StandardResponse[PaginatedData[DatasetMappingResponse]])
|
||||
@project_router.get("/mappings/by-source/{dataset_id}", response_model=StandardResponse[PaginatedData[DatasetMappingResponse]])
|
||||
async def get_mappings_by_source(
|
||||
source_dataset_id: str,
|
||||
dataset_id: str,
|
||||
page: int = Query(1, ge=1, description="页码(从1开始)"),
|
||||
page_size: int = Query(20, ge=1, le=100, description="每页记录数"),
|
||||
db: AsyncSession = Depends(get_db)
|
||||
@@ -116,11 +116,11 @@ async def get_mappings_by_source(
|
||||
# 计算 skip
|
||||
skip = (page - 1) * page_size
|
||||
|
||||
logger.info(f"Get mappings by source dataset id: {source_dataset_id}, page={page}, page_size={page_size}")
|
||||
logger.info(f"Get mappings by source dataset id: {dataset_id}, page={page}, page_size={page_size}")
|
||||
|
||||
# 获取数据和总数
|
||||
mappings, total = await service.get_mappings_by_source_with_count(
|
||||
source_dataset_id=source_dataset_id,
|
||||
dataset_id=dataset_id,
|
||||
skip=skip,
|
||||
limit=page_size
|
||||
)
|
||||
@@ -5,7 +5,7 @@ from typing import List, Optional
|
||||
from app.db.database import get_db
|
||||
from app.services.dataset_mapping_service import DatasetMappingService
|
||||
from app.services.sync_service import SyncService
|
||||
from app.clients import get_clients
|
||||
from app.infrastructure import DatamateClient, LabelStudioClient
|
||||
from app.exceptions import NoDatasetInfoFoundError, DatasetMappingNotFoundError
|
||||
from app.schemas.dataset_mapping import (
|
||||
DatasetMappingResponse,
|
||||
@@ -14,6 +14,7 @@ from app.schemas.dataset_mapping import (
|
||||
)
|
||||
from app.schemas import StandardResponse
|
||||
from app.core.logging import get_logger
|
||||
from app.core.config import settings
|
||||
from . import project_router
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -30,10 +31,12 @@ async def sync_dataset_content(
|
||||
在数据库中记录更新时间,返回更新状态
|
||||
"""
|
||||
try:
|
||||
dm_client_instance, ls_client_instance = get_clients()
|
||||
ls_client = LabelStudioClient(base_url=settings.label_studio_base_url,
|
||||
token=settings.label_studio_user_token)
|
||||
dm_client = DatamateClient(db)
|
||||
mapping_service = DatasetMappingService(db)
|
||||
sync_service = SyncService(dm_client_instance, ls_client_instance, mapping_service)
|
||||
|
||||
sync_service = SyncService(dm_client, ls_client, mapping_service)
|
||||
|
||||
logger.info(f"Sync dataset content request: mapping_id={request.mapping_id}")
|
||||
|
||||
# 根据 mapping_id 获取映射关系
|
||||
@@ -27,7 +27,6 @@ async def get_config():
|
||||
data={
|
||||
"app_name": settings.app_name,
|
||||
"version": settings.app_version,
|
||||
"dm_service_url": settings.dm_service_base_url,
|
||||
"label_studio_url": settings.label_studio_base_url,
|
||||
"debug": settings.debug
|
||||
}
|
||||
@@ -73,7 +73,6 @@ class Settings(BaseSettings):
|
||||
# =========================
|
||||
# Data Management 服务配置
|
||||
# =========================
|
||||
dm_service_base_url: str = "http://data-engine"
|
||||
dm_file_path_prefix: str = "/" # DM存储文件夹前缀
|
||||
|
||||
|
||||
6
runtime/datamate-python/app/infrastructure/__init__.py
Normal file
6
runtime/datamate-python/app/infrastructure/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
# app/clients/__init__.py
|
||||
|
||||
from .label_studio import Client as LabelStudioClient
|
||||
from .datamate import Client as DatamateClient
|
||||
|
||||
__all__ = ["LabelStudioClient", "DatamateClient"]
|
||||
159
runtime/datamate-python/app/infrastructure/datamate.py
Normal file
159
runtime/datamate-python/app/infrastructure/datamate.py
Normal file
@@ -0,0 +1,159 @@
|
||||
from sqlalchemy.ext.asyncio import AsyncSession
|
||||
from sqlalchemy.future import select
|
||||
from sqlalchemy import func
|
||||
from typing import Optional
|
||||
from app.core.config import settings
|
||||
from app.core.logging import get_logger
|
||||
from app.schemas.dm_service import DatasetResponse, PagedDatasetFileResponse, DatasetFileResponse
|
||||
from app.models.dm.dataset import Dataset
|
||||
from app.models.dm.dataset_files import DatasetFiles
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
class Client:
|
||||
"""数据管理服务客户端 - 直接访问数据库"""
|
||||
|
||||
def __init__(self, db: AsyncSession):
|
||||
"""
|
||||
初始化 DM 客户端
|
||||
|
||||
Args:
|
||||
db: 数据库会话
|
||||
"""
|
||||
self.db = db
|
||||
logger.info("Initialize DM service client (Database mode)")
|
||||
|
||||
async def get_dataset(self, dataset_id: str) -> Optional[DatasetResponse]:
|
||||
"""获取数据集详情"""
|
||||
try:
|
||||
logger.info(f"Getting dataset detail: {dataset_id} ...")
|
||||
|
||||
result = await self.db.execute(
|
||||
select(Dataset).where(Dataset.id == dataset_id)
|
||||
)
|
||||
dataset = result.scalar_one_or_none()
|
||||
|
||||
if not dataset:
|
||||
logger.error(f"Dataset not found: {dataset_id}")
|
||||
return None
|
||||
|
||||
# 将数据库模型转换为响应模型
|
||||
# type: ignore 用于忽略 SQLAlchemy 的类型检查问题
|
||||
return DatasetResponse(
|
||||
id=dataset.id, # type: ignore
|
||||
name=dataset.name, # type: ignore
|
||||
description=dataset.description or "", # type: ignore
|
||||
datasetType=dataset.dataset_type, # type: ignore
|
||||
status=dataset.status, # type: ignore
|
||||
fileCount=dataset.file_count or 0, # type: ignore
|
||||
totalSize=dataset.size_bytes or 0, # type: ignore
|
||||
createdAt=dataset.created_at, # type: ignore
|
||||
updatedAt=dataset.updated_at, # type: ignore
|
||||
createdBy=dataset.created_by # type: ignore
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get dataset {dataset_id}: {e}")
|
||||
return None
|
||||
|
||||
async def get_dataset_files(
|
||||
self,
|
||||
dataset_id: str,
|
||||
page: int = 0,
|
||||
size: int = 100,
|
||||
file_type: Optional[str] = None,
|
||||
status: Optional[str] = None
|
||||
) -> Optional[PagedDatasetFileResponse]:
|
||||
"""获取数据集文件列表"""
|
||||
try:
|
||||
logger.info(f"Get dataset files: dataset={dataset_id}, page={page}, size={size}")
|
||||
|
||||
# 构建查询
|
||||
query = select(DatasetFiles).where(DatasetFiles.dataset_id == dataset_id)
|
||||
|
||||
# 添加可选过滤条件
|
||||
if file_type:
|
||||
query = query.where(DatasetFiles.file_type == file_type)
|
||||
if status:
|
||||
query = query.where(DatasetFiles.status == status)
|
||||
|
||||
# 获取总数
|
||||
count_query = select(func.count()).select_from(DatasetFiles).where(
|
||||
DatasetFiles.dataset_id == dataset_id
|
||||
)
|
||||
if file_type:
|
||||
count_query = count_query.where(DatasetFiles.file_type == file_type)
|
||||
if status:
|
||||
count_query = count_query.where(DatasetFiles.status == status)
|
||||
|
||||
count_result = await self.db.execute(count_query)
|
||||
total = count_result.scalar_one()
|
||||
|
||||
# 分页查询
|
||||
query = query.offset(page * size).limit(size).order_by(DatasetFiles.created_at.desc())
|
||||
result = await self.db.execute(query)
|
||||
files = result.scalars().all()
|
||||
|
||||
# 转换为响应模型
|
||||
# type: ignore 用于忽略 SQLAlchemy 的类型检查问题
|
||||
content = [
|
||||
DatasetFileResponse(
|
||||
id=f.id, # type: ignore
|
||||
fileName=f.file_name, # type: ignore
|
||||
fileType=f.file_type or "", # type: ignore
|
||||
filePath=f.file_path, # type: ignore
|
||||
originalName=f.file_name, # type: ignore
|
||||
size=f.file_size, # type: ignore
|
||||
status=f.status, # type: ignore
|
||||
uploadedAt=f.upload_time, # type: ignore
|
||||
description=None,
|
||||
uploadedBy=None,
|
||||
lastAccessTime=f.last_access_time # type: ignore
|
||||
)
|
||||
for f in files
|
||||
]
|
||||
|
||||
total_pages = (total + size - 1) // size if size > 0 else 0
|
||||
|
||||
return PagedDatasetFileResponse(
|
||||
content=content,
|
||||
totalElements=total,
|
||||
totalPages=total_pages,
|
||||
page=page,
|
||||
size=size
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get dataset files for {dataset_id}: {e}")
|
||||
return None
|
||||
|
||||
async def download_file(self, dataset_id: str, file_id: str) -> Optional[bytes]:
|
||||
"""
|
||||
下载文件内容
|
||||
注意:此方法保留接口兼容性,但实际文件下载可能需要通过文件系统或对象存储
|
||||
"""
|
||||
logger.warning(f"download_file is deprecated when using database mode. Use get_file_download_url instead.")
|
||||
return None
|
||||
|
||||
async def get_file_download_url(self, dataset_id: str, file_id: str) -> Optional[str]:
|
||||
"""获取文件下载URL(或文件路径)"""
|
||||
try:
|
||||
result = await self.db.execute(
|
||||
select(DatasetFiles).where(
|
||||
DatasetFiles.id == file_id,
|
||||
DatasetFiles.dataset_id == dataset_id
|
||||
)
|
||||
)
|
||||
file = result.scalar_one_or_none()
|
||||
|
||||
if not file:
|
||||
logger.error(f"File not found: {file_id} in dataset {dataset_id}")
|
||||
return None
|
||||
|
||||
# 返回文件路径(可以是本地路径或对象存储URL)
|
||||
return file.file_path # type: ignore
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get file path for {file_id}: {e}")
|
||||
return None
|
||||
|
||||
async def close(self):
|
||||
"""关闭客户端连接(数据库模式下无需操作)"""
|
||||
logger.info("DM service client closed (Database mode)")
|
||||
@@ -12,7 +12,7 @@ from app.schemas.label_studio import (
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
class LabelStudioClient:
|
||||
class Client:
|
||||
"""Label Studio服务客户端
|
||||
|
||||
使用 HTTP REST API 直接与 Label Studio 交互
|
||||
@@ -8,7 +8,7 @@ from typing import Dict, Any
|
||||
|
||||
from .core.config import settings
|
||||
from .core.logging import setup_logging, get_logger
|
||||
from .clients import DMServiceClient, LabelStudioClient, set_clients
|
||||
from .infrastructure import LabelStudioClient
|
||||
from .api import api_router
|
||||
from .schemas import StandardResponse
|
||||
|
||||
@@ -23,23 +23,12 @@ async def lifespan(app: FastAPI):
|
||||
# 启动时初始化
|
||||
logger.info("Starting Label Studio Adapter...")
|
||||
|
||||
# 初始化客户端
|
||||
dm_client = DMServiceClient()
|
||||
|
||||
# 初始化 Label Studio 客户端,使用 HTTP REST API + Token 认证
|
||||
ls_client = LabelStudioClient(
|
||||
base_url=settings.label_studio_base_url,
|
||||
token=settings.label_studio_user_token
|
||||
)
|
||||
|
||||
# 设置全局客户端
|
||||
set_clients(dm_client, ls_client)
|
||||
|
||||
# 数据库初始化由 Alembic 管理
|
||||
# 在 Docker 环境中,entrypoint.sh 会在启动前运行: alembic upgrade head
|
||||
# 在开发环境中,手动运行: alembic upgrade head
|
||||
logger.info("Database schema managed by Alembic")
|
||||
|
||||
logger.info("Label Studio Adapter started")
|
||||
|
||||
yield
|
||||
@@ -155,7 +144,6 @@ async def root():
|
||||
"message": f"{settings.app_name} is running",
|
||||
"version": settings.app_version,
|
||||
"docs_url": "/docs",
|
||||
"dm_service_url": settings.dm_service_base_url,
|
||||
"label_studio_url": settings.label_studio_base_url
|
||||
}
|
||||
)
|
||||
138
runtime/datamate-python/app/models/README.md
Normal file
138
runtime/datamate-python/app/models/README.md
Normal file
@@ -0,0 +1,138 @@
|
||||
# DataMate 数据模型结构
|
||||
|
||||
本文档列出了根据 `scripts/db` 中的 SQL 文件创建的所有 Python 数据模型。
|
||||
|
||||
## 模型组织结构
|
||||
|
||||
```
|
||||
app/models/
|
||||
├── __init__.py # 主模块导出文件
|
||||
├── dm/ # 数据管理 (Data Management) 模块
|
||||
│ ├── __init__.py
|
||||
│ ├── annotation_template.py # 标注模板
|
||||
│ ├── labeling_project.py # 标注项目
|
||||
│ ├── dataset.py # 数据集
|
||||
│ ├── dataset_files.py # 数据集文件
|
||||
│ ├── dataset_statistics.py # 数据集统计
|
||||
│ ├── dataset_tag.py # 数据集标签关联
|
||||
│ ├── tag.py # 标签
|
||||
│ └── user.py # 用户
|
||||
├── cleaning/ # 数据清洗 (Data Cleaning) 模块
|
||||
│ ├── __init__.py
|
||||
│ ├── clean_template.py # 清洗模板
|
||||
│ ├── clean_task.py # 清洗任务
|
||||
│ ├── operator_instance.py # 算子实例
|
||||
│ └── clean_result.py # 清洗结果
|
||||
├── collection/ # 数据归集 (Data Collection) 模块
|
||||
│ ├── __init__.py
|
||||
│ ├── task_execution.py # 任务执行明细
|
||||
│ ├── collection_task.py # 数据归集任务
|
||||
│ ├── task_log.py # 任务执行记录
|
||||
│ └── datax_template.py # DataX模板配置
|
||||
├── common/ # 通用 (Common) 模块
|
||||
│ ├── __init__.py
|
||||
│ └── chunk_upload_request.py # 文件切片上传请求
|
||||
└── operator/ # 算子 (Operator) 模块
|
||||
├── __init__.py
|
||||
├── operator.py # 算子
|
||||
├── operator_category.py # 算子分类
|
||||
└── operator_category_relation.py # 算子分类关联
|
||||
```
|
||||
|
||||
## 模块详情
|
||||
|
||||
### 1. Data Management (DM) 模块
|
||||
对应 SQL: `data-management-init.sql` 和 `data-annotation-init.sql`
|
||||
|
||||
#### 模型列表:
|
||||
- **AnnotationTemplate** (`t_dm_annotation_templates`) - 标注模板
|
||||
- **LabelingProject** (`t_dm_labeling_projects`) - 标注项目
|
||||
- **Dataset** (`t_dm_datasets`) - 数据集(支持医学影像、文本、问答等多种类型)
|
||||
- **DatasetFiles** (`t_dm_dataset_files`) - 数据集文件
|
||||
- **DatasetStatistics** (`t_dm_dataset_statistics`) - 数据集统计信息
|
||||
- **Tag** (`t_dm_tags`) - 标签
|
||||
- **DatasetTag** (`t_dm_dataset_tags`) - 数据集标签关联
|
||||
- **User** (`users`) - 用户
|
||||
|
||||
### 2. Data Cleaning 模块
|
||||
对应 SQL: `data-cleaning-init.sql`
|
||||
|
||||
#### 模型列表:
|
||||
- **CleanTemplate** (`t_clean_template`) - 清洗模板
|
||||
- **CleanTask** (`t_clean_task`) - 清洗任务
|
||||
- **OperatorInstance** (`t_operator_instance`) - 算子实例
|
||||
- **CleanResult** (`t_clean_result`) - 清洗结果
|
||||
|
||||
### 3. Data Collection (DC) 模块
|
||||
对应 SQL: `data-collection-init.sql`
|
||||
|
||||
#### 模型列表:
|
||||
- **TaskExecution** (`t_dc_task_executions`) - 任务执行明细
|
||||
- **CollectionTask** (`t_dc_collection_tasks`) - 数据归集任务
|
||||
- **TaskLog** (`t_dc_task_log`) - 任务执行记录
|
||||
- **DataxTemplate** (`t_dc_datax_templates`) - DataX模板配置
|
||||
|
||||
### 4. Common 模块
|
||||
对应 SQL: `data-common-init.sql`
|
||||
|
||||
#### 模型列表:
|
||||
- **ChunkUploadRequest** (`t_chunk_upload_request`) - 文件切片上传请求
|
||||
|
||||
### 5. Operator 模块
|
||||
对应 SQL: `data-operator-init.sql`
|
||||
|
||||
#### 模型列表:
|
||||
- **Operator** (`t_operator`) - 算子
|
||||
- **OperatorCategory** (`t_operator_category`) - 算子分类
|
||||
- **OperatorCategoryRelation** (`t_operator_category_relation`) - 算子分类关联
|
||||
|
||||
## 使用方式
|
||||
|
||||
```python
|
||||
# 导入所有模型
|
||||
from app.models import (
|
||||
# DM 模块
|
||||
AnnotationTemplate,
|
||||
LabelingProject,
|
||||
Dataset,
|
||||
DatasetFiles,
|
||||
DatasetStatistics,
|
||||
DatasetTag,
|
||||
Tag,
|
||||
User,
|
||||
# Cleaning 模块
|
||||
CleanTemplate,
|
||||
CleanTask,
|
||||
OperatorInstance,
|
||||
CleanResult,
|
||||
# Collection 模块
|
||||
TaskExecution,
|
||||
CollectionTask,
|
||||
TaskLog,
|
||||
DataxTemplate,
|
||||
# Common 模块
|
||||
ChunkUploadRequest,
|
||||
# Operator 模块
|
||||
Operator,
|
||||
OperatorCategory,
|
||||
OperatorCategoryRelation
|
||||
)
|
||||
|
||||
# 或者按模块导入
|
||||
from app.models.dm import Dataset, DatasetFiles
|
||||
from app.models.collection import CollectionTask
|
||||
from app.models.operator import Operator
|
||||
```
|
||||
|
||||
## 注意事项
|
||||
|
||||
1. **UUID 主键**: 大部分表使用 UUID (String(36)) 作为主键
|
||||
2. **时间戳**: 使用 `TIMESTAMP` 类型,并配置自动更新
|
||||
3. **软删除**: 部分模型(如 AnnotationTemplate, LabelingProject)支持软删除,包含 `deleted_at` 字段和 `is_deleted` 属性
|
||||
4. **JSON 字段**: 配置信息、元数据等使用 JSON 类型存储
|
||||
5. **字段一致性**: 所有模型字段都严格按照 SQL 定义创建,确保与数据库表结构完全一致
|
||||
|
||||
## 更新记录
|
||||
|
||||
- 2025-10-25: 根据 `scripts/db` 中的 SQL 文件创建所有数据模型
|
||||
- 已更新现有的 `annotation_template.py`、`labeling_project.py`、`dataset_files.py` 以匹配 SQL 定义
|
||||
69
runtime/datamate-python/app/models/__init__.py
Normal file
69
runtime/datamate-python/app/models/__init__.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# app/models/__init__.py
|
||||
|
||||
# Data Management (DM) 模块
|
||||
from .dm import (
|
||||
AnnotationTemplate,
|
||||
LabelingProject,
|
||||
Dataset,
|
||||
DatasetFiles,
|
||||
DatasetStatistics,
|
||||
DatasetTag,
|
||||
Tag,
|
||||
User
|
||||
)
|
||||
|
||||
# Data Cleaning 模块
|
||||
from .cleaning import (
|
||||
CleanTemplate,
|
||||
CleanTask,
|
||||
OperatorInstance,
|
||||
CleanResult
|
||||
)
|
||||
|
||||
# Data Collection (DC) 模块
|
||||
from .collection import (
|
||||
TaskExecution,
|
||||
CollectionTask,
|
||||
TaskLog,
|
||||
DataxTemplate
|
||||
)
|
||||
|
||||
# Common 模块
|
||||
from .common import (
|
||||
ChunkUploadRequest
|
||||
)
|
||||
|
||||
# Operator 模块
|
||||
from .operator import (
|
||||
Operator,
|
||||
OperatorCategory,
|
||||
OperatorCategoryRelation
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
# DM 模块
|
||||
"AnnotationTemplate",
|
||||
"LabelingProject",
|
||||
"Dataset",
|
||||
"DatasetFiles",
|
||||
"DatasetStatistics",
|
||||
"DatasetTag",
|
||||
"Tag",
|
||||
"User",
|
||||
# Cleaning 模块
|
||||
"CleanTemplate",
|
||||
"CleanTask",
|
||||
"OperatorInstance",
|
||||
"CleanResult",
|
||||
# Collection 模块
|
||||
"TaskExecution",
|
||||
"CollectionTask",
|
||||
"TaskLog",
|
||||
"DataxTemplate",
|
||||
# Common 模块
|
||||
"ChunkUploadRequest",
|
||||
# Operator 模块
|
||||
"Operator",
|
||||
"OperatorCategory",
|
||||
"OperatorCategoryRelation"
|
||||
]
|
||||
13
runtime/datamate-python/app/models/cleaning/__init__.py
Normal file
13
runtime/datamate-python/app/models/cleaning/__init__.py
Normal file
@@ -0,0 +1,13 @@
|
||||
# app/models/cleaning/__init__.py
|
||||
|
||||
from .clean_template import CleanTemplate
|
||||
from .clean_task import CleanTask
|
||||
from .operator_instance import OperatorInstance
|
||||
from .clean_result import CleanResult
|
||||
|
||||
__all__ = [
|
||||
"CleanTemplate",
|
||||
"CleanTask",
|
||||
"OperatorInstance",
|
||||
"CleanResult"
|
||||
]
|
||||
22
runtime/datamate-python/app/models/cleaning/clean_result.py
Normal file
22
runtime/datamate-python/app/models/cleaning/clean_result.py
Normal file
@@ -0,0 +1,22 @@
|
||||
from sqlalchemy import Column, String, BigInteger, Text
|
||||
from app.db.database import Base
|
||||
|
||||
class CleanResult(Base):
|
||||
"""清洗结果模型"""
|
||||
|
||||
__tablename__ = "t_clean_result"
|
||||
|
||||
instance_id = Column(String(64), primary_key=True, comment="实例ID")
|
||||
src_file_id = Column(String(64), nullable=True, comment="源文件ID")
|
||||
dest_file_id = Column(String(64), primary_key=True, comment="目标文件ID")
|
||||
src_name = Column(String(256), nullable=True, comment="源文件名")
|
||||
dest_name = Column(String(256), nullable=True, comment="目标文件名")
|
||||
src_type = Column(String(256), nullable=True, comment="源文件类型")
|
||||
dest_type = Column(String(256), nullable=True, comment="目标文件类型")
|
||||
src_size = Column(BigInteger, nullable=True, comment="源文件大小")
|
||||
dest_size = Column(BigInteger, nullable=True, comment="目标文件大小")
|
||||
status = Column(String(256), nullable=True, comment="处理状态")
|
||||
result = Column(Text, nullable=True, comment="处理结果")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<CleanResult(instance_id={self.instance_id}, dest_file_id={self.dest_file_id}, status={self.status})>"
|
||||
27
runtime/datamate-python/app/models/cleaning/clean_task.py
Normal file
27
runtime/datamate-python/app/models/cleaning/clean_task.py
Normal file
@@ -0,0 +1,27 @@
|
||||
from sqlalchemy import Column, String, BigInteger, Integer, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
|
||||
class CleanTask(Base):
|
||||
"""清洗任务模型"""
|
||||
|
||||
__tablename__ = "t_clean_task"
|
||||
|
||||
id = Column(String(64), primary_key=True, comment="任务ID")
|
||||
name = Column(String(64), nullable=True, comment="任务名称")
|
||||
description = Column(String(256), nullable=True, comment="任务描述")
|
||||
status = Column(String(256), nullable=True, comment="任务状态")
|
||||
src_dataset_id = Column(String(64), nullable=True, comment="源数据集ID")
|
||||
src_dataset_name = Column(String(64), nullable=True, comment="源数据集名称")
|
||||
dest_dataset_id = Column(String(64), nullable=True, comment="目标数据集ID")
|
||||
dest_dataset_name = Column(String(64), nullable=True, comment="目标数据集名称")
|
||||
before_size = Column(BigInteger, nullable=True, comment="清洗前大小")
|
||||
after_size = Column(BigInteger, nullable=True, comment="清洗后大小")
|
||||
file_count = Column(Integer, nullable=True, comment="文件数量")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
started_at = Column(TIMESTAMP, nullable=True, comment="开始时间")
|
||||
finished_at = Column(TIMESTAMP, nullable=True, comment="完成时间")
|
||||
created_by = Column(String(256), nullable=True, comment="创建者")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<CleanTask(id={self.id}, name={self.name}, status={self.status})>"
|
||||
@@ -0,0 +1,18 @@
|
||||
from sqlalchemy import Column, String, Text, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
|
||||
class CleanTemplate(Base):
|
||||
"""清洗模板模型"""
|
||||
|
||||
__tablename__ = "t_clean_template"
|
||||
|
||||
id = Column(String(64), primary_key=True, unique=True, comment="模板ID")
|
||||
name = Column(String(64), nullable=True, comment="模板名称")
|
||||
description = Column(String(256), nullable=True, comment="模板描述")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
|
||||
created_by = Column(String(256), nullable=True, comment="创建者")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<CleanTemplate(id={self.id}, name={self.name})>"
|
||||
@@ -0,0 +1,15 @@
|
||||
from sqlalchemy import Column, String, Integer, Text
|
||||
from app.db.database import Base
|
||||
|
||||
class OperatorInstance(Base):
|
||||
"""算子实例模型"""
|
||||
|
||||
__tablename__ = "t_operator_instance"
|
||||
|
||||
instance_id = Column(String(256), primary_key=True, comment="实例ID")
|
||||
operator_id = Column(String(256), primary_key=True, comment="算子ID")
|
||||
op_index = Column(Integer, primary_key=True, comment="算子索引")
|
||||
settings_override = Column(Text, nullable=True, comment="配置覆盖")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<OperatorInstance(instance_id={self.instance_id}, operator_id={self.operator_id}, index={self.op_index})>"
|
||||
13
runtime/datamate-python/app/models/collection/__init__.py
Normal file
13
runtime/datamate-python/app/models/collection/__init__.py
Normal file
@@ -0,0 +1,13 @@
|
||||
# app/models/collection/__init__.py
|
||||
|
||||
from .task_execution import TaskExecution
|
||||
from .collection_task import CollectionTask
|
||||
from .task_log import TaskLog
|
||||
from .datax_template import DataxTemplate
|
||||
|
||||
__all__ = [
|
||||
"TaskExecution",
|
||||
"CollectionTask",
|
||||
"TaskLog",
|
||||
"DataxTemplate"
|
||||
]
|
||||
@@ -0,0 +1,28 @@
|
||||
from sqlalchemy import Column, String, Text, Integer, BigInteger, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
|
||||
class CollectionTask(Base):
|
||||
"""数据归集任务模型"""
|
||||
|
||||
__tablename__ = "t_dc_collection_tasks"
|
||||
|
||||
id = Column(String(36), primary_key=True, comment="任务ID(UUID)")
|
||||
name = Column(String(255), nullable=False, comment="任务名称")
|
||||
description = Column(Text, nullable=True, comment="任务描述")
|
||||
sync_mode = Column(String(20), default='ONCE', comment="同步模式:ONCE/SCHEDULED")
|
||||
config = Column(Text, nullable=False, comment="归集配置(DataX配置),包含源端和目标端配置信息")
|
||||
schedule_expression = Column(String(255), nullable=True, comment="Cron调度表达式")
|
||||
status = Column(String(20), default='DRAFT', comment="任务状态:DRAFT/READY/RUNNING/SUCCESS/FAILED/STOPPED")
|
||||
retry_count = Column(Integer, default=3, comment="重试次数")
|
||||
timeout_seconds = Column(Integer, default=3600, comment="超时时间(秒)")
|
||||
max_records = Column(BigInteger, nullable=True, comment="最大处理记录数")
|
||||
sort_field = Column(String(100), nullable=True, comment="增量字段")
|
||||
last_execution_id = Column(String(36), nullable=True, comment="最后执行ID(UUID)")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
|
||||
created_by = Column(String(255), nullable=True, comment="创建者")
|
||||
updated_by = Column(String(255), nullable=True, comment="更新者")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<CollectionTask(id={self.id}, name={self.name}, status={self.status})>"
|
||||
@@ -0,0 +1,23 @@
|
||||
from sqlalchemy import Column, String, Text, Boolean, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
|
||||
class DataxTemplate(Base):
|
||||
"""DataX模板配置模型"""
|
||||
|
||||
__tablename__ = "t_dc_datax_templates"
|
||||
|
||||
id = Column(String(36), primary_key=True, comment="模板ID(UUID)")
|
||||
name = Column(String(255), nullable=False, unique=True, comment="模板名称")
|
||||
source_type = Column(String(50), nullable=False, comment="源数据源类型")
|
||||
target_type = Column(String(50), nullable=False, comment="目标数据源类型")
|
||||
template_content = Column(Text, nullable=False, comment="模板内容")
|
||||
description = Column(Text, nullable=True, comment="模板描述")
|
||||
version = Column(String(20), default='1.0.0', comment="版本号")
|
||||
is_system = Column(Boolean, default=False, comment="是否系统模板")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
|
||||
created_by = Column(String(255), nullable=True, comment="创建者")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<DataxTemplate(id={self.id}, name={self.name}, source={self.source_type}, target={self.target_type})>"
|
||||
@@ -0,0 +1,34 @@
|
||||
from sqlalchemy import Column, String, Text, Integer, BigInteger, DECIMAL, JSON, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
|
||||
class TaskExecution(Base):
|
||||
"""任务执行明细模型"""
|
||||
|
||||
__tablename__ = "t_dc_task_executions"
|
||||
|
||||
id = Column(String(36), primary_key=True, comment="执行记录ID(UUID)")
|
||||
task_id = Column(String(36), nullable=False, comment="任务ID")
|
||||
task_name = Column(String(255), nullable=False, comment="任务名称")
|
||||
status = Column(String(20), default='RUNNING', comment="执行状态:RUNNING/SUCCESS/FAILED/STOPPED")
|
||||
progress = Column(DECIMAL(5, 2), default=0.00, comment="进度百分比")
|
||||
records_total = Column(BigInteger, default=0, comment="总记录数")
|
||||
records_processed = Column(BigInteger, default=0, comment="已处理记录数")
|
||||
records_success = Column(BigInteger, default=0, comment="成功记录数")
|
||||
records_failed = Column(BigInteger, default=0, comment="失败记录数")
|
||||
throughput = Column(DECIMAL(10, 2), default=0.00, comment="吞吐量(条/秒)")
|
||||
data_size_bytes = Column(BigInteger, default=0, comment="数据量(字节)")
|
||||
started_at = Column(TIMESTAMP, nullable=True, comment="开始时间")
|
||||
completed_at = Column(TIMESTAMP, nullable=True, comment="完成时间")
|
||||
duration_seconds = Column(Integer, default=0, comment="执行时长(秒)")
|
||||
config = Column(JSON, nullable=True, comment="执行配置")
|
||||
error_message = Column(Text, nullable=True, comment="错误信息")
|
||||
datax_job_id = Column(Text, nullable=True, comment="datax任务ID")
|
||||
result = Column(Text, nullable=True, comment="执行结果")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
|
||||
created_by = Column(String(255), nullable=True, comment="创建者")
|
||||
updated_by = Column(String(255), nullable=True, comment="更新者")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<TaskExecution(id={self.id}, task_id={self.task_id}, status={self.status})>"
|
||||
26
runtime/datamate-python/app/models/collection/task_log.py
Normal file
26
runtime/datamate-python/app/models/collection/task_log.py
Normal file
@@ -0,0 +1,26 @@
|
||||
from sqlalchemy import Column, String, Text, Integer, BigInteger, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
|
||||
class TaskLog(Base):
|
||||
"""任务执行记录模型"""
|
||||
|
||||
__tablename__ = "t_dc_task_log"
|
||||
|
||||
id = Column(String(36), primary_key=True, comment="执行记录ID(UUID)")
|
||||
task_id = Column(String(36), nullable=False, comment="任务ID")
|
||||
task_name = Column(String(255), nullable=False, comment="任务名称")
|
||||
sync_mode = Column(String(20), default='FULL', comment="同步模式:FULL/INCREMENTAL")
|
||||
status = Column(String(20), default='RUNNING', comment="执行状态:RUNNING/SUCCESS/FAILED/STOPPED")
|
||||
start_time = Column(TIMESTAMP, nullable=True, comment="开始时间")
|
||||
end_time = Column(TIMESTAMP, nullable=True, comment="结束时间")
|
||||
duration = Column(BigInteger, nullable=True, comment="执行时长(毫秒)")
|
||||
process_id = Column(String(50), nullable=True, comment="进程ID")
|
||||
log_path = Column(String(500), nullable=True, comment="日志文件路径")
|
||||
error_msg = Column(Text, nullable=True, comment="错误信息")
|
||||
result = Column(Text, nullable=True, comment="执行结果")
|
||||
retry_times = Column(Integer, default=0, comment="重试次数")
|
||||
create_time = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<TaskLog(id={self.id}, task_id={self.task_id}, status={self.status})>"
|
||||
7
runtime/datamate-python/app/models/common/__init__.py
Normal file
7
runtime/datamate-python/app/models/common/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
# app/models/common/__init__.py
|
||||
|
||||
from .chunk_upload_request import ChunkUploadRequest
|
||||
|
||||
__all__ = [
|
||||
"ChunkUploadRequest"
|
||||
]
|
||||
@@ -0,0 +1,19 @@
|
||||
from sqlalchemy import Column, String, Integer, Text, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
|
||||
class ChunkUploadRequest(Base):
|
||||
"""文件切片上传请求模型"""
|
||||
|
||||
__tablename__ = "t_chunk_upload_request"
|
||||
|
||||
id = Column(String(36), primary_key=True, comment="UUID")
|
||||
total_file_num = Column(Integer, nullable=True, comment="总文件数")
|
||||
uploaded_file_num = Column(Integer, nullable=True, comment="已上传文件数")
|
||||
upload_path = Column(String(256), nullable=True, comment="文件路径")
|
||||
timeout = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="上传请求超时时间")
|
||||
service_id = Column(String(64), nullable=True, comment="上传请求所属服务:DATA-MANAGEMENT(数据管理)")
|
||||
check_info = Column(Text, nullable=True, comment="业务信息")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<ChunkUploadRequest(id={self.id}, service_id={self.service_id}, progress={self.uploaded_file_num}/{self.total_file_num})>"
|
||||
21
runtime/datamate-python/app/models/dm/__init__.py
Normal file
21
runtime/datamate-python/app/models/dm/__init__.py
Normal file
@@ -0,0 +1,21 @@
|
||||
# app/models/dm/__init__.py
|
||||
|
||||
from .annotation_template import AnnotationTemplate
|
||||
from .labeling_project import LabelingProject
|
||||
from .dataset import Dataset
|
||||
from .dataset_files import DatasetFiles
|
||||
from .dataset_statistics import DatasetStatistics
|
||||
from .dataset_tag import DatasetTag
|
||||
from .tag import Tag
|
||||
from .user import User
|
||||
|
||||
__all__ = [
|
||||
"AnnotationTemplate",
|
||||
"LabelingProject",
|
||||
"Dataset",
|
||||
"DatasetFiles",
|
||||
"DatasetStatistics",
|
||||
"DatasetTag",
|
||||
"Tag",
|
||||
"User"
|
||||
]
|
||||
24
runtime/datamate-python/app/models/dm/annotation_template.py
Normal file
24
runtime/datamate-python/app/models/dm/annotation_template.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from sqlalchemy import Column, String, JSON, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
import uuid
|
||||
|
||||
class AnnotationTemplate(Base):
|
||||
"""标注模板模型"""
|
||||
|
||||
__tablename__ = "t_dm_annotation_templates"
|
||||
|
||||
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID主键ID")
|
||||
name = Column(String(32), nullable=False, comment="模板名称")
|
||||
description = Column(String(255), nullable=True, comment="模板描述")
|
||||
configuration = Column(JSON, nullable=True, comment="配置信息(JSON格式)")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
deleted_at = Column(TIMESTAMP, nullable=True, comment="删除时间(软删除)")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<AnnotationTemplate(id={self.id}, name={self.name})>"
|
||||
|
||||
@property
|
||||
def is_deleted(self) -> bool:
|
||||
"""检查是否已被软删除"""
|
||||
return self.deleted_at is not None
|
||||
35
runtime/datamate-python/app/models/dm/dataset.py
Normal file
35
runtime/datamate-python/app/models/dm/dataset.py
Normal file
@@ -0,0 +1,35 @@
|
||||
from sqlalchemy import Column, String, Text, BigInteger, Integer, Boolean, JSON, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
import uuid
|
||||
|
||||
class Dataset(Base):
|
||||
"""数据集模型(支持医学影像、文本、问答等多种类型)"""
|
||||
|
||||
__tablename__ = "t_dm_datasets"
|
||||
|
||||
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID")
|
||||
name = Column(String(255), nullable=False, comment="数据集名称")
|
||||
description = Column(Text, nullable=True, comment="数据集描述")
|
||||
dataset_type = Column(String(50), nullable=False, comment="数据集类型:IMAGE/TEXT/QA/MULTIMODAL/OTHER")
|
||||
category = Column(String(100), nullable=True, comment="数据集分类:医学影像/问答/文献等")
|
||||
path = Column(String(500), nullable=True, comment="数据存储路径")
|
||||
format = Column(String(50), nullable=True, comment="数据格式:DCM/JPG/JSON/CSV等")
|
||||
schema_info = Column(JSON, nullable=True, comment="数据结构信息")
|
||||
size_bytes = Column(BigInteger, default=0, comment="数据大小(字节)")
|
||||
file_count = Column(BigInteger, default=0, comment="文件数量")
|
||||
record_count = Column(BigInteger, default=0, comment="记录数量")
|
||||
retention_days = Column(Integer, default=0, comment="数据保留天数(0表示长期保留)")
|
||||
tags = Column(JSON, nullable=True, comment="标签列表")
|
||||
metadata = Column(JSON, nullable=True, comment="元数据信息")
|
||||
status = Column(String(50), default='DRAFT', comment="状态:DRAFT/ACTIVE/ARCHIVED")
|
||||
is_public = Column(Boolean, default=False, comment="是否公开")
|
||||
is_featured = Column(Boolean, default=False, comment="是否推荐")
|
||||
version = Column(BigInteger, nullable=False, default=0, comment="版本号")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
|
||||
created_by = Column(String(255), nullable=True, comment="创建者")
|
||||
updated_by = Column(String(255), nullable=True, comment="更新者")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<Dataset(id={self.id}, name={self.name}, type={self.dataset_type})>"
|
||||
27
runtime/datamate-python/app/models/dm/dataset_files.py
Normal file
27
runtime/datamate-python/app/models/dm/dataset_files.py
Normal file
@@ -0,0 +1,27 @@
|
||||
from sqlalchemy import Column, String, JSON, BigInteger, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
import uuid
|
||||
|
||||
class DatasetFiles(Base):
|
||||
"""DM数据集文件模型"""
|
||||
|
||||
__tablename__ = "t_dm_dataset_files"
|
||||
|
||||
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID")
|
||||
dataset_id = Column(String(36), nullable=False, comment="所属数据集ID(UUID)")
|
||||
file_name = Column(String(255), nullable=False, comment="文件名")
|
||||
file_path = Column(String(1000), nullable=False, comment="文件路径")
|
||||
file_type = Column(String(50), nullable=True, comment="文件格式:JPG/PNG/DCM/TXT等")
|
||||
file_size = Column(BigInteger, default=0, comment="文件大小(字节)")
|
||||
check_sum = Column(String(64), nullable=True, comment="文件校验和")
|
||||
tags = Column(JSON, nullable=True, comment="文件标签信息")
|
||||
metadata = Column(JSON, nullable=True, comment="文件元数据")
|
||||
status = Column(String(50), default='ACTIVE', comment="文件状态:ACTIVE/DELETED/PROCESSING")
|
||||
upload_time = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="上传时间")
|
||||
last_access_time = Column(TIMESTAMP, nullable=True, comment="最后访问时间")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<DatasetFiles(id={self.id}, dataset_id={self.dataset_id}, file_name={self.file_name})>"
|
||||
25
runtime/datamate-python/app/models/dm/dataset_statistics.py
Normal file
25
runtime/datamate-python/app/models/dm/dataset_statistics.py
Normal file
@@ -0,0 +1,25 @@
|
||||
from sqlalchemy import Column, String, Date, BigInteger, JSON, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
import uuid
|
||||
|
||||
class DatasetStatistics(Base):
|
||||
"""数据集统计信息模型"""
|
||||
|
||||
__tablename__ = "t_dm_dataset_statistics"
|
||||
|
||||
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID")
|
||||
dataset_id = Column(String(36), nullable=False, comment="数据集ID(UUID)")
|
||||
stat_date = Column(Date, nullable=False, comment="统计日期")
|
||||
total_files = Column(BigInteger, default=0, comment="总文件数")
|
||||
total_size = Column(BigInteger, default=0, comment="总大小(字节)")
|
||||
processed_files = Column(BigInteger, default=0, comment="已处理文件数")
|
||||
error_files = Column(BigInteger, default=0, comment="错误文件数")
|
||||
download_count = Column(BigInteger, default=0, comment="下载次数")
|
||||
view_count = Column(BigInteger, default=0, comment="查看次数")
|
||||
quality_metrics = Column(JSON, nullable=True, comment="质量指标")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<DatasetStatistics(id={self.id}, dataset_id={self.dataset_id}, date={self.stat_date})>"
|
||||
15
runtime/datamate-python/app/models/dm/dataset_tag.py
Normal file
15
runtime/datamate-python/app/models/dm/dataset_tag.py
Normal file
@@ -0,0 +1,15 @@
|
||||
from sqlalchemy import Column, String, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
|
||||
class DatasetTag(Base):
|
||||
"""数据集标签关联模型"""
|
||||
|
||||
__tablename__ = "t_dm_dataset_tags"
|
||||
|
||||
dataset_id = Column(String(36), primary_key=True, comment="数据集ID(UUID)")
|
||||
tag_id = Column(String(36), primary_key=True, comment="标签ID(UUID)")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<DatasetTag(dataset_id={self.dataset_id}, tag_id={self.tag_id})>"
|
||||
26
runtime/datamate-python/app/models/dm/labeling_project.py
Normal file
26
runtime/datamate-python/app/models/dm/labeling_project.py
Normal file
@@ -0,0 +1,26 @@
|
||||
from sqlalchemy import Column, String, Integer, JSON, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
import uuid
|
||||
|
||||
class LabelingProject(Base):
|
||||
"""DM标注项目模型(原 DatasetMapping)"""
|
||||
|
||||
__tablename__ = "t_dm_labeling_projects"
|
||||
|
||||
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID主键ID")
|
||||
dataset_id = Column(String(36), nullable=False, comment="数据集ID")
|
||||
name = Column(String(32), nullable=False, comment="项目名称")
|
||||
labeling_project_id = Column(Integer, nullable=False, comment="Label Studio项目ID")
|
||||
configuration = Column(JSON, nullable=True, comment="标签配置")
|
||||
progress = Column(JSON, nullable=True, comment="标注进度统计")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
deleted_at = Column(TIMESTAMP, nullable=True, comment="删除时间(软删除)")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<LabelingProject(id={self.id}, dataset_id={self.dataset_id}, name={self.name})>"
|
||||
|
||||
@property
|
||||
def is_deleted(self) -> bool:
|
||||
"""检查是否已被软删除"""
|
||||
return self.deleted_at is not None
|
||||
21
runtime/datamate-python/app/models/dm/tag.py
Normal file
21
runtime/datamate-python/app/models/dm/tag.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from sqlalchemy import Column, String, Text, BigInteger, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
import uuid
|
||||
|
||||
class Tag(Base):
|
||||
"""标签模型"""
|
||||
|
||||
__tablename__ = "t_dm_tags"
|
||||
|
||||
id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()), comment="UUID")
|
||||
name = Column(String(100), nullable=False, unique=True, comment="标签名称")
|
||||
description = Column(Text, nullable=True, comment="标签描述")
|
||||
category = Column(String(50), nullable=True, comment="标签分类")
|
||||
color = Column(String(7), nullable=True, comment="标签颜色(十六进制)")
|
||||
usage_count = Column(BigInteger, default=0, comment="使用次数")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<Tag(id={self.id}, name={self.name}, category={self.category})>"
|
||||
24
runtime/datamate-python/app/models/dm/user.py
Normal file
24
runtime/datamate-python/app/models/dm/user.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from sqlalchemy import Column, String, BigInteger, Boolean, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
|
||||
class User(Base):
|
||||
"""用户模型"""
|
||||
|
||||
__tablename__ = "users"
|
||||
|
||||
id = Column(BigInteger, primary_key=True, autoincrement=True, comment="用户ID")
|
||||
username = Column(String(255), nullable=False, unique=True, comment="用户名")
|
||||
email = Column(String(255), nullable=False, unique=True, comment="邮箱")
|
||||
password_hash = Column(String(255), nullable=False, comment="密码哈希")
|
||||
full_name = Column(String(255), nullable=True, comment="真实姓名")
|
||||
avatar_url = Column(String(500), nullable=True, comment="头像URL")
|
||||
role = Column(String(50), nullable=False, default='USER', comment="角色:ADMIN/USER")
|
||||
organization = Column(String(255), nullable=True, comment="所属机构")
|
||||
enabled = Column(Boolean, nullable=False, default=True, comment="是否启用")
|
||||
last_login_at = Column(TIMESTAMP, nullable=True, comment="最后登录时间")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<User(id={self.id}, username={self.username}, role={self.role})>"
|
||||
11
runtime/datamate-python/app/models/operator/__init__.py
Normal file
11
runtime/datamate-python/app/models/operator/__init__.py
Normal file
@@ -0,0 +1,11 @@
|
||||
# app/models/operator/__init__.py
|
||||
|
||||
from .operator import Operator
|
||||
from .operator_category import OperatorCategory
|
||||
from .operator_category_relation import OperatorCategoryRelation
|
||||
|
||||
__all__ = [
|
||||
"Operator",
|
||||
"OperatorCategory",
|
||||
"OperatorCategoryRelation"
|
||||
]
|
||||
24
runtime/datamate-python/app/models/operator/operator.py
Normal file
24
runtime/datamate-python/app/models/operator/operator.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from sqlalchemy import Column, String, Text, Boolean, TIMESTAMP
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
|
||||
class Operator(Base):
|
||||
"""算子模型"""
|
||||
|
||||
__tablename__ = "t_operator"
|
||||
|
||||
id = Column(String(64), primary_key=True, comment="算子ID")
|
||||
name = Column(String(64), nullable=True, comment="算子名称")
|
||||
description = Column(String(256), nullable=True, comment="算子描述")
|
||||
version = Column(String(256), nullable=True, comment="版本")
|
||||
inputs = Column(String(256), nullable=True, comment="输入类型")
|
||||
outputs = Column(String(256), nullable=True, comment="输出类型")
|
||||
runtime = Column(Text, nullable=True, comment="运行时信息")
|
||||
settings = Column(Text, nullable=True, comment="配置信息")
|
||||
file_name = Column(Text, nullable=True, comment="文件名")
|
||||
is_star = Column(Boolean, nullable=True, comment="是否收藏")
|
||||
created_at = Column(TIMESTAMP, server_default=func.current_timestamp(), comment="创建时间")
|
||||
updated_at = Column(TIMESTAMP, server_default=func.current_timestamp(), onupdate=func.current_timestamp(), comment="更新时间")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<Operator(id={self.id}, name={self.name}, version={self.version})>"
|
||||
@@ -0,0 +1,15 @@
|
||||
from sqlalchemy import Column, String, Integer
|
||||
from app.db.database import Base
|
||||
|
||||
class OperatorCategory(Base):
|
||||
"""算子分类模型"""
|
||||
|
||||
__tablename__ = "t_operator_category"
|
||||
|
||||
id = Column(Integer, primary_key=True, autoincrement=True, comment="分类ID")
|
||||
name = Column(String(64), nullable=True, comment="分类名称")
|
||||
type = Column(String(64), nullable=True, comment="分类类型")
|
||||
parent_id = Column(Integer, nullable=True, comment="父分类ID")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<OperatorCategory(id={self.id}, name={self.name}, type={self.type})>"
|
||||
@@ -0,0 +1,13 @@
|
||||
from sqlalchemy import Column, String, Integer
|
||||
from app.db.database import Base
|
||||
|
||||
class OperatorCategoryRelation(Base):
|
||||
"""算子分类关联模型"""
|
||||
|
||||
__tablename__ = "t_operator_category_relation"
|
||||
|
||||
category_id = Column(Integer, primary_key=True, comment="分类ID")
|
||||
operator_id = Column(String(64), primary_key=True, comment="算子ID")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<OperatorCategoryRelation(category_id={self.category_id}, operator_id={self.operator_id})>"
|
||||
@@ -6,7 +6,7 @@ from .common import BaseResponseModel
|
||||
|
||||
class DatasetMappingBase(BaseResponseModel):
|
||||
"""数据集映射 基础模型"""
|
||||
source_dataset_id: str = Field(..., description="源数据集ID")
|
||||
dataset_id: str = Field(..., description="源数据集ID")
|
||||
|
||||
class DatasetMappingCreateRequest(DatasetMappingBase):
|
||||
"""数据集映射 创建 请求模型"""
|
||||
@@ -21,7 +21,7 @@ class DatasetMappingCreateResponse(BaseResponseModel):
|
||||
|
||||
class DatasetMappingUpdateRequest(BaseResponseModel):
|
||||
"""数据集映射 更新 请求模型"""
|
||||
source_dataset_id: Optional[str] = Field(None, description="源数据集ID")
|
||||
dataset_id: Optional[str] = Field(None, description="源数据集ID")
|
||||
|
||||
class DatasetMappingResponse(DatasetMappingBase):
|
||||
"""数据集映射 查询 响应模型"""
|
||||
@@ -5,7 +5,7 @@ from typing import Optional, List, Tuple
|
||||
from datetime import datetime
|
||||
import uuid
|
||||
|
||||
from app.models.dataset_mapping import DatasetMapping
|
||||
from app.models.dm.labeling_project import LabelingProject
|
||||
from app.schemas.dataset_mapping import (
|
||||
DatasetMappingCreateRequest,
|
||||
DatasetMappingUpdateRequest,
|
||||
@@ -28,11 +28,11 @@ class DatasetMappingService:
|
||||
labelling_project_name: str
|
||||
) -> DatasetMappingResponse:
|
||||
"""创建数据集映射"""
|
||||
logger.info(f"Create dataset mapping: {mapping_data.source_dataset_id} -> {labelling_project_id}")
|
||||
logger.info(f"Create dataset mapping: {mapping_data.dataset_id} -> {labelling_project_id}")
|
||||
|
||||
db_mapping = DatasetMapping(
|
||||
db_mapping = LabelingProject(
|
||||
mapping_id=str(uuid.uuid4()),
|
||||
source_dataset_id=mapping_data.source_dataset_id,
|
||||
dataset_id=mapping_data.dataset_id,
|
||||
labelling_project_id=labelling_project_id,
|
||||
labelling_project_name=labelling_project_name
|
||||
)
|
||||
@@ -41,48 +41,48 @@ class DatasetMappingService:
|
||||
await self.db.commit()
|
||||
await self.db.refresh(db_mapping)
|
||||
|
||||
logger.info(f"Mapping created: {db_mapping.mapping_id}")
|
||||
logger.info(f"Mapping created: {db_mapping.id}")
|
||||
return DatasetMappingResponse.model_validate(db_mapping)
|
||||
|
||||
async def get_mapping_by_source_uuid(
|
||||
self,
|
||||
source_dataset_id: str
|
||||
dataset_id: str
|
||||
) -> Optional[DatasetMappingResponse]:
|
||||
"""根据源数据集ID获取映射(返回第一个未删除的)"""
|
||||
logger.debug(f"Get mapping by source dataset id: {source_dataset_id}")
|
||||
logger.debug(f"Get mapping by source dataset id: {dataset_id}")
|
||||
|
||||
result = await self.db.execute(
|
||||
select(DatasetMapping).where(
|
||||
DatasetMapping.source_dataset_id == source_dataset_id,
|
||||
DatasetMapping.deleted_at.is_(None)
|
||||
select(LabelingProject).where(
|
||||
LabelingProject.dataset_id == dataset_id,
|
||||
LabelingProject.deleted_at.is_(None)
|
||||
)
|
||||
)
|
||||
mapping = result.scalar_one_or_none()
|
||||
|
||||
if mapping:
|
||||
logger.debug(f"Found mapping: {mapping.mapping_id}")
|
||||
logger.debug(f"Found mapping: {mapping.id}")
|
||||
return DatasetMappingResponse.model_validate(mapping)
|
||||
|
||||
logger.debug(f"No mapping found for source dataset id: {source_dataset_id}")
|
||||
logger.debug(f"No mapping found for source dataset id: {dataset_id}")
|
||||
return None
|
||||
|
||||
async def get_mappings_by_source_dataset_id(
|
||||
async def get_mappings_by_dataset_id(
|
||||
self,
|
||||
source_dataset_id: str,
|
||||
dataset_id: str,
|
||||
include_deleted: bool = False
|
||||
) -> List[DatasetMappingResponse]:
|
||||
"""根据源数据集ID获取所有映射关系"""
|
||||
logger.debug(f"Get all mappings by source dataset id: {source_dataset_id}")
|
||||
logger.debug(f"Get all mappings by source dataset id: {dataset_id}")
|
||||
|
||||
query = select(DatasetMapping).where(
|
||||
DatasetMapping.source_dataset_id == source_dataset_id
|
||||
query = select(LabelingProject).where(
|
||||
LabelingProject.dataset_id == dataset_id
|
||||
)
|
||||
|
||||
if not include_deleted:
|
||||
query = query.where(DatasetMapping.deleted_at.is_(None))
|
||||
query = query.where(LabelingProject.deleted_at.is_(None))
|
||||
|
||||
result = await self.db.execute(
|
||||
query.order_by(DatasetMapping.created_at.desc())
|
||||
query.order_by(LabelingProject.created_at.desc())
|
||||
)
|
||||
mappings = result.scalars().all()
|
||||
|
||||
@@ -97,9 +97,9 @@ class DatasetMappingService:
|
||||
logger.debug(f"Get mapping by Label Studio project id: {labelling_project_id}")
|
||||
|
||||
result = await self.db.execute(
|
||||
select(DatasetMapping).where(
|
||||
DatasetMapping.labelling_project_id == labelling_project_id,
|
||||
DatasetMapping.deleted_at.is_(None)
|
||||
select(LabelingProject).where(
|
||||
LabelingProject.labeling_project_id == labelling_project_id,
|
||||
LabelingProject.deleted_at.is_(None)
|
||||
)
|
||||
)
|
||||
mapping = result.scalar_one_or_none()
|
||||
@@ -116,15 +116,15 @@ class DatasetMappingService:
|
||||
logger.debug(f"Get mapping: {mapping_id}")
|
||||
|
||||
result = await self.db.execute(
|
||||
select(DatasetMapping).where(
|
||||
DatasetMapping.mapping_id == mapping_id,
|
||||
DatasetMapping.deleted_at.is_(None)
|
||||
select(LabelingProject).where(
|
||||
LabelingProject.id == mapping_id,
|
||||
LabelingProject.deleted_at.is_(None)
|
||||
)
|
||||
)
|
||||
mapping = result.scalar_one_or_none()
|
||||
|
||||
if mapping:
|
||||
logger.debug(f"Found mapping: {mapping.mapping_id}")
|
||||
logger.debug(f"Found mapping: {mapping.id}")
|
||||
return DatasetMappingResponse.model_validate(mapping)
|
||||
|
||||
logger.debug(f"Mapping not found: {mapping_id}")
|
||||
@@ -143,11 +143,11 @@ class DatasetMappingService:
|
||||
return None
|
||||
|
||||
update_values = update_data.model_dump(exclude_unset=True)
|
||||
update_values["last_updated_at"] = datetime.utcnow()
|
||||
update_values["last_updated_at"] = datetime.now()
|
||||
|
||||
result = await self.db.execute(
|
||||
update(DatasetMapping)
|
||||
.where(DatasetMapping.mapping_id == mapping_id)
|
||||
update(LabelingProject)
|
||||
.where(LabelingProject.id == mapping_id)
|
||||
.values(**update_values)
|
||||
)
|
||||
await self.db.commit()
|
||||
@@ -161,10 +161,10 @@ class DatasetMappingService:
|
||||
logger.debug(f"Update mapping last updated at: {mapping_id}")
|
||||
|
||||
result = await self.db.execute(
|
||||
update(DatasetMapping)
|
||||
update(LabelingProject)
|
||||
.where(
|
||||
DatasetMapping.mapping_id == mapping_id,
|
||||
DatasetMapping.deleted_at.is_(None)
|
||||
LabelingProject.id == mapping_id,
|
||||
LabelingProject.deleted_at.is_(None)
|
||||
)
|
||||
.values(last_updated_at=datetime.utcnow())
|
||||
)
|
||||
@@ -176,12 +176,12 @@ class DatasetMappingService:
|
||||
logger.info(f"Soft delete mapping: {mapping_id}")
|
||||
|
||||
result = await self.db.execute(
|
||||
update(DatasetMapping)
|
||||
update(LabelingProject)
|
||||
.where(
|
||||
DatasetMapping.mapping_id == mapping_id,
|
||||
DatasetMapping.deleted_at.is_(None)
|
||||
LabelingProject.id == mapping_id,
|
||||
LabelingProject.deleted_at.is_(None)
|
||||
)
|
||||
.values(deleted_at=datetime.utcnow())
|
||||
.values(deleted_at=datetime.now())
|
||||
)
|
||||
await self.db.commit()
|
||||
|
||||
@@ -202,11 +202,11 @@ class DatasetMappingService:
|
||||
logger.debug(f"List all mappings, skip: {skip}, limit: {limit}")
|
||||
|
||||
result = await self.db.execute(
|
||||
select(DatasetMapping)
|
||||
.where(DatasetMapping.deleted_at.is_(None))
|
||||
select(LabelingProject)
|
||||
.where(LabelingProject.deleted_at.is_(None))
|
||||
.offset(skip)
|
||||
.limit(limit)
|
||||
.order_by(DatasetMapping.created_at.desc())
|
||||
.order_by(LabelingProject.created_at.desc())
|
||||
)
|
||||
mappings = result.scalars().all()
|
||||
|
||||
@@ -215,10 +215,10 @@ class DatasetMappingService:
|
||||
|
||||
async def count_mappings(self, include_deleted: bool = False) -> int:
|
||||
"""统计映射总数"""
|
||||
query = select(func.count()).select_from(DatasetMapping)
|
||||
query = select(func.count()).select_from(LabelingProject)
|
||||
|
||||
if not include_deleted:
|
||||
query = query.where(DatasetMapping.deleted_at.is_(None))
|
||||
query = query.where(LabelingProject.deleted_at.is_(None))
|
||||
|
||||
result = await self.db.execute(query)
|
||||
return result.scalar_one()
|
||||
@@ -233,14 +233,14 @@ class DatasetMappingService:
|
||||
logger.debug(f"List all mappings with count, skip: {skip}, limit: {limit}")
|
||||
|
||||
# 构建查询
|
||||
query = select(DatasetMapping)
|
||||
query = select(LabelingProject)
|
||||
if not include_deleted:
|
||||
query = query.where(DatasetMapping.deleted_at.is_(None))
|
||||
query = query.where(LabelingProject.deleted_at.is_(None))
|
||||
|
||||
# 获取总数
|
||||
count_query = select(func.count()).select_from(DatasetMapping)
|
||||
count_query = select(func.count()).select_from(LabelingProject)
|
||||
if not include_deleted:
|
||||
count_query = count_query.where(DatasetMapping.deleted_at.is_(None))
|
||||
count_query = count_query.where(LabelingProject.deleted_at.is_(None))
|
||||
|
||||
count_result = await self.db.execute(count_query)
|
||||
total = count_result.scalar_one()
|
||||
@@ -250,7 +250,7 @@ class DatasetMappingService:
|
||||
query
|
||||
.offset(skip)
|
||||
.limit(limit)
|
||||
.order_by(DatasetMapping.created_at.desc())
|
||||
.order_by(LabelingProject.created_at.desc())
|
||||
)
|
||||
mappings = result.scalars().all()
|
||||
|
||||
@@ -259,28 +259,28 @@ class DatasetMappingService:
|
||||
|
||||
async def get_mappings_by_source_with_count(
|
||||
self,
|
||||
source_dataset_id: str,
|
||||
dataset_id: str,
|
||||
skip: int = 0,
|
||||
limit: int = 100,
|
||||
include_deleted: bool = False
|
||||
) -> Tuple[List[DatasetMappingResponse], int]:
|
||||
"""根据源数据集ID获取映射关系及总数(用于分页)"""
|
||||
logger.debug(f"Get mappings by source dataset id with count: {source_dataset_id}")
|
||||
logger.debug(f"Get mappings by source dataset id with count: {dataset_id}")
|
||||
|
||||
# 构建查询
|
||||
query = select(DatasetMapping).where(
|
||||
DatasetMapping.source_dataset_id == source_dataset_id
|
||||
query = select(LabelingProject).where(
|
||||
LabelingProject.dataset_id == dataset_id
|
||||
)
|
||||
|
||||
if not include_deleted:
|
||||
query = query.where(DatasetMapping.deleted_at.is_(None))
|
||||
query = query.where(LabelingProject.deleted_at.is_(None))
|
||||
|
||||
# 获取总数
|
||||
count_query = select(func.count()).select_from(DatasetMapping).where(
|
||||
DatasetMapping.source_dataset_id == source_dataset_id
|
||||
count_query = select(func.count()).select_from(LabelingProject).where(
|
||||
LabelingProject.dataset_id == dataset_id
|
||||
)
|
||||
if not include_deleted:
|
||||
count_query = count_query.where(DatasetMapping.deleted_at.is_(None))
|
||||
count_query = count_query.where(LabelingProject.deleted_at.is_(None))
|
||||
|
||||
count_result = await self.db.execute(count_query)
|
||||
total = count_result.scalar_one()
|
||||
@@ -290,7 +290,7 @@ class DatasetMappingService:
|
||||
query
|
||||
.offset(skip)
|
||||
.limit(limit)
|
||||
.order_by(DatasetMapping.created_at.desc())
|
||||
.order_by(LabelingProject.created_at.desc())
|
||||
)
|
||||
mappings = result.scalars().all()
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
from typing import Optional, List, Dict, Any, Tuple
|
||||
from app.clients.dm_client import DMServiceClient
|
||||
from app.clients.label_studio_client import LabelStudioClient
|
||||
from app.infrastructure import LabelStudioClient, DatamateClient
|
||||
from app.services.dataset_mapping_service import DatasetMappingService
|
||||
from app.schemas.dataset_mapping import SyncDatasetResponse
|
||||
from app.core.logging import get_logger
|
||||
@@ -14,7 +13,7 @@ class SyncService:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dm_client: DMServiceClient,
|
||||
dm_client: DatamateClient,
|
||||
ls_client: LabelStudioClient,
|
||||
mapping_service: DatasetMappingService
|
||||
):
|
||||
@@ -107,9 +106,9 @@ class SyncService:
|
||||
|
||||
try:
|
||||
# 获取数据集信息
|
||||
dataset_info = await self.dm_client.get_dataset(mapping.source_dataset_id)
|
||||
dataset_info = await self.dm_client.get_dataset(mapping.dataset_id)
|
||||
if not dataset_info:
|
||||
raise NoDatasetInfoFoundError(mapping.source_dataset_id)
|
||||
raise NoDatasetInfoFoundError(mapping.dataset_id)
|
||||
|
||||
synced_files = 0
|
||||
deleted_tasks = 0
|
||||
@@ -129,7 +128,7 @@ class SyncService:
|
||||
# 分页获取并同步文件
|
||||
while True:
|
||||
files_response = await self.dm_client.get_dataset_files(
|
||||
mapping.source_dataset_id,
|
||||
mapping.dataset_id,
|
||||
page=page,
|
||||
size=batch_size,
|
||||
status="COMPLETED" # 只同步已完成的文件
|
||||
@@ -173,7 +172,7 @@ class SyncService:
|
||||
"meta": {
|
||||
"file_size": file_info.size,
|
||||
"file_type": file_info.fileType,
|
||||
"dm_dataset_id": mapping.source_dataset_id,
|
||||
"dm_dataset_id": mapping.dataset_id,
|
||||
"dm_file_id": file_info.id,
|
||||
"original_name": file_info.originalName,
|
||||
}
|
||||
@@ -249,22 +248,22 @@ class SyncService:
|
||||
|
||||
async def get_sync_status(
|
||||
self,
|
||||
source_dataset_id: str
|
||||
dataset_id: str
|
||||
) -> Optional[Dict[str, Any]]:
|
||||
"""获取同步状态"""
|
||||
mapping = await self.mapping_service.get_mapping_by_source_uuid(source_dataset_id)
|
||||
mapping = await self.mapping_service.get_mapping_by_source_uuid(dataset_id)
|
||||
if not mapping:
|
||||
return None
|
||||
|
||||
# 获取DM数据集信息
|
||||
dataset_info = await self.dm_client.get_dataset(source_dataset_id)
|
||||
dataset_info = await self.dm_client.get_dataset(dataset_id)
|
||||
|
||||
# 获取Label Studio项目任务数量
|
||||
tasks_info = await self.ls_client.get_project_tasks(mapping.labelling_project_id)
|
||||
|
||||
return {
|
||||
"mapping_id": mapping.mapping_id,
|
||||
"source_dataset_id": source_dataset_id,
|
||||
"dataset_id": dataset_id,
|
||||
"labelling_project_id": mapping.labelling_project_id,
|
||||
"last_updated_at": mapping.last_updated_at,
|
||||
"dm_total_files": dataset_info.fileCount if dataset_info else 0,
|
||||
5
runtime/datamate-python/uvicorn_start.sh
Executable file
5
runtime/datamate-python/uvicorn_start.sh
Executable file
@@ -0,0 +1,5 @@
|
||||
uvicorn app.main:app \
|
||||
--host 0.0.0.0 \
|
||||
--port 18000 \
|
||||
--reload \
|
||||
--log-level debug
|
||||
@@ -1,148 +0,0 @@
|
||||
# A generic, single database configuration.
|
||||
|
||||
[alembic]
|
||||
# path to migration scripts.
|
||||
# this is typically a path given in POSIX (e.g. forward slashes)
|
||||
# format, relative to the token %(here)s which refers to the location of this
|
||||
# ini file
|
||||
script_location = %(here)s/alembic
|
||||
|
||||
# template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
|
||||
# Uncomment the line below if you want the files to be prepended with date and time
|
||||
# see https://alembic.sqlalchemy.org/en/latest/tutorial.html#editing-the-ini-file
|
||||
# for all available tokens
|
||||
# file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s
|
||||
|
||||
# sys.path path, will be prepended to sys.path if present.
|
||||
# defaults to the current working directory. for multiple paths, the path separator
|
||||
# is defined by "path_separator" below.
|
||||
prepend_sys_path = .
|
||||
|
||||
|
||||
# timezone to use when rendering the date within the migration file
|
||||
# as well as the filename.
|
||||
# If specified, requires the python>=3.9 or backports.zoneinfo library and tzdata library.
|
||||
# Any required deps can installed by adding `alembic[tz]` to the pip requirements
|
||||
# string value is passed to ZoneInfo()
|
||||
# leave blank for localtime
|
||||
# timezone =
|
||||
|
||||
# max length of characters to apply to the "slug" field
|
||||
# truncate_slug_length = 40
|
||||
|
||||
# set to 'true' to run the environment during
|
||||
# the 'revision' command, regardless of autogenerate
|
||||
# revision_environment = false
|
||||
|
||||
# set to 'true' to allow .pyc and .pyo files without
|
||||
# a source .py file to be detected as revisions in the
|
||||
# versions/ directory
|
||||
# sourceless = false
|
||||
|
||||
# version location specification; This defaults
|
||||
# to <script_location>/versions. When using multiple version
|
||||
# directories, initial revisions must be specified with --version-path.
|
||||
# The path separator used here should be the separator specified by "path_separator"
|
||||
# below.
|
||||
# version_locations = %(here)s/bar:%(here)s/bat:%(here)s/alembic/versions
|
||||
|
||||
# path_separator; This indicates what character is used to split lists of file
|
||||
# paths, including version_locations and prepend_sys_path within configparser
|
||||
# files such as alembic.ini.
|
||||
# The default rendered in new alembic.ini files is "os", which uses os.pathsep
|
||||
# to provide os-dependent path splitting.
|
||||
#
|
||||
# Note that in order to support legacy alembic.ini files, this default does NOT
|
||||
# take place if path_separator is not present in alembic.ini. If this
|
||||
# option is omitted entirely, fallback logic is as follows:
|
||||
#
|
||||
# 1. Parsing of the version_locations option falls back to using the legacy
|
||||
# "version_path_separator" key, which if absent then falls back to the legacy
|
||||
# behavior of splitting on spaces and/or commas.
|
||||
# 2. Parsing of the prepend_sys_path option falls back to the legacy
|
||||
# behavior of splitting on spaces, commas, or colons.
|
||||
#
|
||||
# Valid values for path_separator are:
|
||||
#
|
||||
# path_separator = :
|
||||
# path_separator = ;
|
||||
# path_separator = space
|
||||
# path_separator = newline
|
||||
#
|
||||
# Use os.pathsep. Default configuration used for new projects.
|
||||
path_separator = os
|
||||
|
||||
# set to 'true' to search source files recursively
|
||||
# in each "version_locations" directory
|
||||
# new in Alembic version 1.10
|
||||
# recursive_version_locations = false
|
||||
|
||||
# the output encoding used when revision files
|
||||
# are written from script.py.mako
|
||||
# output_encoding = utf-8
|
||||
|
||||
# database URL. This is consumed by the user-maintained env.py script only.
|
||||
# other means of configuring database URLs may be customized within the env.py
|
||||
# file.
|
||||
# sqlalchemy.url = driver://user:pass@localhost/dbname
|
||||
# 注释掉默认 URL,我们将在 env.py 中从应用配置读取
|
||||
|
||||
|
||||
[post_write_hooks]
|
||||
# post_write_hooks defines scripts or Python functions that are run
|
||||
# on newly generated revision scripts. See the documentation for further
|
||||
# detail and examples
|
||||
|
||||
# format using "black" - use the console_scripts runner, against the "black" entrypoint
|
||||
# hooks = black
|
||||
# black.type = console_scripts
|
||||
# black.entrypoint = black
|
||||
# black.options = -l 79 REVISION_SCRIPT_FILENAME
|
||||
|
||||
# lint with attempts to fix using "ruff" - use the module runner, against the "ruff" module
|
||||
# hooks = ruff
|
||||
# ruff.type = module
|
||||
# ruff.module = ruff
|
||||
# ruff.options = check --fix REVISION_SCRIPT_FILENAME
|
||||
|
||||
# Alternatively, use the exec runner to execute a binary found on your PATH
|
||||
# hooks = ruff
|
||||
# ruff.type = exec
|
||||
# ruff.executable = ruff
|
||||
# ruff.options = check --fix REVISION_SCRIPT_FILENAME
|
||||
|
||||
# Logging configuration. This is also consumed by the user-maintained
|
||||
# env.py script only.
|
||||
[loggers]
|
||||
keys = root,sqlalchemy,alembic
|
||||
|
||||
[handlers]
|
||||
keys = console
|
||||
|
||||
[formatters]
|
||||
keys = generic
|
||||
|
||||
[logger_root]
|
||||
level = WARNING
|
||||
handlers = console
|
||||
qualname =
|
||||
|
||||
[logger_sqlalchemy]
|
||||
level = WARNING
|
||||
handlers =
|
||||
qualname = sqlalchemy.engine
|
||||
|
||||
[logger_alembic]
|
||||
level = INFO
|
||||
handlers =
|
||||
qualname = alembic
|
||||
|
||||
[handler_console]
|
||||
class = StreamHandler
|
||||
args = (sys.stderr,)
|
||||
level = NOTSET
|
||||
formatter = generic
|
||||
|
||||
[formatter_generic]
|
||||
format = %(levelname)-5.5s [%(name)s] %(message)s
|
||||
datefmt = %H:%M:%S
|
||||
@@ -1 +0,0 @@
|
||||
Generic single-database configuration.
|
||||
@@ -1,145 +0,0 @@
|
||||
from logging.config import fileConfig
|
||||
|
||||
from sqlalchemy import engine_from_config
|
||||
from sqlalchemy import pool
|
||||
from sqlalchemy import create_engine, text
|
||||
|
||||
from alembic import context
|
||||
import os
|
||||
from urllib.parse import quote_plus
|
||||
|
||||
# 导入应用配置和模型
|
||||
from app.core.config import settings
|
||||
from app.db.database import Base
|
||||
# 导入所有模型,以便 autogenerate 能够检测到它们
|
||||
from app.models import dataset_mapping # noqa
|
||||
|
||||
# this is the Alembic Config object, which provides
|
||||
# access to the values within the .ini file in use.
|
||||
config = context.config
|
||||
|
||||
|
||||
def ensure_database_and_user():
|
||||
"""
|
||||
确保数据库和用户存在
|
||||
使用 root 用户连接 MySQL,创建数据库和应用用户
|
||||
"""
|
||||
# 只在 MySQL 配置时执行
|
||||
if not settings.mysql_host:
|
||||
return
|
||||
|
||||
mysql_root_password = os.getenv('MYSQL_ROOT_PASSWORD', 'password')
|
||||
|
||||
# URL 编码密码以处理特殊字符
|
||||
encoded_password = quote_plus(mysql_root_password)
|
||||
|
||||
# 使用 root 用户连接(不指定数据库)
|
||||
root_url = f"mysql+pymysql://root:{encoded_password}@{settings.mysql_host}:{settings.mysql_port}/"
|
||||
|
||||
try:
|
||||
root_engine = create_engine(root_url, poolclass=pool.NullPool)
|
||||
with root_engine.connect() as conn:
|
||||
# 创建数据库(如果不存在)
|
||||
conn.execute(text(
|
||||
f"CREATE DATABASE IF NOT EXISTS `{settings.mysql_database}` "
|
||||
f"CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci"
|
||||
))
|
||||
conn.commit()
|
||||
|
||||
# 创建用户(如果不存在)- 使用 MySQL 8 默认的 caching_sha2_password
|
||||
conn.execute(text(
|
||||
f"CREATE USER IF NOT EXISTS '{settings.mysql_user}'@'%' "
|
||||
f"IDENTIFIED BY '{settings.mysql_password}'"
|
||||
))
|
||||
conn.commit()
|
||||
|
||||
# 授予权限
|
||||
conn.execute(text(
|
||||
f"GRANT ALL PRIVILEGES ON `{settings.mysql_database}`.* TO '{settings.mysql_user}'@'%'"
|
||||
))
|
||||
conn.commit()
|
||||
|
||||
# 刷新权限
|
||||
conn.execute(text("FLUSH PRIVILEGES"))
|
||||
conn.commit()
|
||||
|
||||
root_engine.dispose()
|
||||
print(f"✓ Database '{settings.mysql_database}' and user '{settings.mysql_user}' are ready")
|
||||
except Exception as e:
|
||||
print(f"⚠️ Warning: Could not ensure database and user: {e}")
|
||||
print(f" This may be expected if database already exists or permissions are set")
|
||||
|
||||
|
||||
# 从应用配置设置数据库 URL
|
||||
config.set_main_option('sqlalchemy.url', settings.sync_database_url)
|
||||
|
||||
# Interpret the config file for Python logging.
|
||||
# This line sets up loggers basically.
|
||||
if config.config_file_name is not None:
|
||||
fileConfig(config.config_file_name)
|
||||
|
||||
# add your model's MetaData object here
|
||||
# for 'autogenerate' support
|
||||
# from myapp import mymodel
|
||||
# target_metadata = mymodel.Base.metadata
|
||||
target_metadata = Base.metadata
|
||||
|
||||
# other values from the config, defined by the needs of env.py,
|
||||
# can be acquired:
|
||||
# my_important_option = config.get_main_option("my_important_option")
|
||||
# ... etc.
|
||||
|
||||
|
||||
def run_migrations_offline() -> None:
|
||||
"""Run migrations in 'offline' mode.
|
||||
|
||||
This configures the context with just a URL
|
||||
and not an Engine, though an Engine is acceptable
|
||||
here as well. By skipping the Engine creation
|
||||
we don't even need a DBAPI to be available.
|
||||
|
||||
Calls to context.execute() here emit the given string to the
|
||||
script output.
|
||||
|
||||
"""
|
||||
url = config.get_main_option("sqlalchemy.url")
|
||||
context.configure(
|
||||
url=url,
|
||||
target_metadata=target_metadata,
|
||||
literal_binds=True,
|
||||
dialect_opts={"paramstyle": "named"},
|
||||
)
|
||||
|
||||
with context.begin_transaction():
|
||||
context.run_migrations()
|
||||
|
||||
|
||||
def run_migrations_online() -> None:
|
||||
"""Run migrations in 'online' mode.
|
||||
|
||||
In this scenario we need to create an Engine
|
||||
and associate a connection with the context.
|
||||
|
||||
"""
|
||||
# 先确保数据库和用户存在
|
||||
ensure_database_and_user()
|
||||
|
||||
connectable = engine_from_config(
|
||||
config.get_section(config.config_ini_section, {}),
|
||||
prefix="sqlalchemy.",
|
||||
poolclass=pool.NullPool,
|
||||
)
|
||||
|
||||
with connectable.connect() as connection:
|
||||
context.configure(
|
||||
connection=connection, target_metadata=target_metadata
|
||||
)
|
||||
|
||||
with context.begin_transaction():
|
||||
context.run_migrations()
|
||||
|
||||
|
||||
if context.is_offline_mode():
|
||||
run_migrations_offline()
|
||||
else:
|
||||
run_migrations_online()
|
||||
@@ -1,28 +0,0 @@
|
||||
"""${message}
|
||||
|
||||
Revision ID: ${up_revision}
|
||||
Revises: ${down_revision | comma,n}
|
||||
Create Date: ${create_date}
|
||||
|
||||
"""
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
${imports if imports else ""}
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = ${repr(up_revision)}
|
||||
down_revision: Union[str, Sequence[str], None] = ${repr(down_revision)}
|
||||
branch_labels: Union[str, Sequence[str], None] = ${repr(branch_labels)}
|
||||
depends_on: Union[str, Sequence[str], None] = ${repr(depends_on)}
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
"""Upgrade schema."""
|
||||
${upgrades if upgrades else "pass"}
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
"""Downgrade schema."""
|
||||
${downgrades if downgrades else "pass"}
|
||||
@@ -1,41 +0,0 @@
|
||||
"""Initiation
|
||||
|
||||
Revision ID: 755dc1afb8ad
|
||||
Revises:
|
||||
Create Date: 2025-10-20 19:34:20.258554
|
||||
|
||||
"""
|
||||
from typing import Sequence, Union
|
||||
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision: str = '755dc1afb8ad'
|
||||
down_revision: Union[str, Sequence[str], None] = None
|
||||
branch_labels: Union[str, Sequence[str], None] = None
|
||||
depends_on: Union[str, Sequence[str], None] = None
|
||||
|
||||
|
||||
def upgrade() -> None:
|
||||
"""Upgrade schema."""
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table('mapping',
|
||||
sa.Column('mapping_id', sa.String(length=36), nullable=False),
|
||||
sa.Column('source_dataset_id', sa.String(length=36), nullable=False, comment='源数据集ID'),
|
||||
sa.Column('labelling_project_id', sa.String(length=36), nullable=False, comment='标注项目ID'),
|
||||
sa.Column('labelling_project_name', sa.String(length=255), nullable=True, comment='标注项目名称'),
|
||||
sa.Column('created_at', sa.DateTime(timezone=True), server_default=sa.text('now()'), nullable=True, comment='创建时间'),
|
||||
sa.Column('last_updated_at', sa.DateTime(timezone=True), server_default=sa.text('now()'), nullable=True, comment='最后更新时间'),
|
||||
sa.Column('deleted_at', sa.DateTime(timezone=True), nullable=True, comment='删除时间'),
|
||||
sa.PrimaryKeyConstraint('mapping_id')
|
||||
)
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade() -> None:
|
||||
"""Downgrade schema."""
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.drop_table('mapping')
|
||||
# ### end Alembic commands ###
|
||||
@@ -1,8 +0,0 @@
|
||||
# app/clients/__init__.py
|
||||
|
||||
from .dm_client import DMServiceClient
|
||||
from .label_studio_client import LabelStudioClient
|
||||
from .client_manager import get_clients, set_clients, get_dm_client, get_ls_client
|
||||
|
||||
__all__ = ["DMServiceClient", "LabelStudioClient", "get_clients", "set_clients", "get_dm_client", "get_ls_client"]
|
||||
|
||||
@@ -1,34 +0,0 @@
|
||||
from typing import Optional
|
||||
from fastapi import HTTPException
|
||||
|
||||
from .dm_client import DMServiceClient
|
||||
from .label_studio_client import LabelStudioClient
|
||||
|
||||
# 全局客户端实例(将在main.py中初始化)
|
||||
dm_client: Optional[DMServiceClient] = None
|
||||
ls_client: Optional[LabelStudioClient] = None
|
||||
|
||||
def get_clients() -> tuple[DMServiceClient, LabelStudioClient]:
|
||||
"""获取客户端实例"""
|
||||
global dm_client, ls_client
|
||||
if not dm_client or not ls_client:
|
||||
raise HTTPException(status_code=500, detail="客户端未初始化")
|
||||
return dm_client, ls_client
|
||||
|
||||
def set_clients(dm_client_instance: DMServiceClient, ls_client_instance: LabelStudioClient) -> None:
|
||||
"""设置全局客户端实例"""
|
||||
global dm_client, ls_client
|
||||
dm_client = dm_client_instance
|
||||
ls_client = ls_client_instance
|
||||
|
||||
def get_dm_client() -> DMServiceClient:
|
||||
"""获取DM服务客户端"""
|
||||
if not dm_client:
|
||||
raise HTTPException(status_code=500, detail="DM客户端未初始化")
|
||||
return dm_client
|
||||
|
||||
def get_ls_client() -> LabelStudioClient:
|
||||
"""获取Label Studio客户端"""
|
||||
if not ls_client:
|
||||
raise HTTPException(status_code=500, detail="Label Studio客户端未初始化")
|
||||
return ls_client
|
||||
@@ -1,138 +0,0 @@
|
||||
import httpx
|
||||
from typing import Optional
|
||||
from app.core.config import settings
|
||||
from app.core.logging import get_logger
|
||||
from app.schemas.dm_service import DatasetResponse, PagedDatasetFileResponse
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
class DMServiceClient:
|
||||
"""数据管理服务客户端"""
|
||||
|
||||
def __init__(self, base_url: str|None = None, timeout: float = 30.0):
|
||||
self.base_url = base_url or settings.dm_service_base_url
|
||||
self.timeout = timeout
|
||||
self.client = httpx.AsyncClient(
|
||||
base_url=self.base_url,
|
||||
timeout=self.timeout
|
||||
)
|
||||
logger.info(f"Initialize DM service client, base url: {self.base_url}")
|
||||
|
||||
@staticmethod
|
||||
def _unwrap_payload(data):
|
||||
"""Unwrap common envelope shapes like {'code': ..., 'message': ..., 'data': {...}}."""
|
||||
if isinstance(data, dict) and 'data' in data and isinstance(data['data'], (dict, list)):
|
||||
return data['data']
|
||||
return data
|
||||
|
||||
@staticmethod
|
||||
def _is_error_payload(data) -> bool:
|
||||
"""Detect error-shaped payloads returned with HTTP 200."""
|
||||
if not isinstance(data, dict):
|
||||
return False
|
||||
# Common patterns: {error, message, ...} or {code, message, ...} without data
|
||||
if 'error' in data and 'message' in data:
|
||||
return True
|
||||
if 'code' in data and 'message' in data and 'data' not in data:
|
||||
return True
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def _keys(d):
|
||||
return list(d.keys()) if isinstance(d, dict) else []
|
||||
|
||||
async def get_dataset(self, dataset_id: str) -> Optional[DatasetResponse]:
|
||||
"""获取数据集详情"""
|
||||
try:
|
||||
logger.info(f"Getting dataset detail: {dataset_id} ...")
|
||||
response = await self.client.get(f"/data-management/datasets/{dataset_id}")
|
||||
response.raise_for_status()
|
||||
raw = response.json()
|
||||
|
||||
data = self._unwrap_payload(raw)
|
||||
|
||||
if self._is_error_payload(data):
|
||||
logger.error(f"DM service returned error for dataset {dataset_id}: {data}")
|
||||
return None
|
||||
if not isinstance(data, dict):
|
||||
logger.error(f"Unexpected dataset payload type for {dataset_id}: {type(data).__name__}")
|
||||
return None
|
||||
required = ["id", "name", "description", "datasetType", "status", "fileCount", "totalSize"]
|
||||
if not all(k in data for k in required):
|
||||
logger.error(f"Dataset payload missing required fields for {dataset_id}. Keys: {self._keys(data)}")
|
||||
return None
|
||||
return DatasetResponse(**data)
|
||||
except httpx.HTTPError as e:
|
||||
logger.error(f"Failed to get dataset {dataset_id}: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"[Unexpected] [GET] dataset {dataset_id}: \n{e}\nRaw JSON received: \n{raw}")
|
||||
|
||||
return None
|
||||
|
||||
async def get_dataset_files(
|
||||
self,
|
||||
dataset_id: str,
|
||||
page: int = 0,
|
||||
size: int = 100,
|
||||
file_type: Optional[str] = None,
|
||||
status: Optional[str] = None
|
||||
) -> Optional[PagedDatasetFileResponse]:
|
||||
"""获取数据集文件列表"""
|
||||
try:
|
||||
logger.info(f"Get dataset files: dataset={dataset_id}, page={page}, size={size}")
|
||||
params: dict = {"page": page, "size": size}
|
||||
if file_type:
|
||||
params["fileType"] = file_type
|
||||
if status:
|
||||
params["status"] = status
|
||||
|
||||
response = await self.client.get(
|
||||
f"/data-management/datasets/{dataset_id}/files",
|
||||
params=params
|
||||
)
|
||||
response.raise_for_status()
|
||||
raw = response.json()
|
||||
data = self._unwrap_payload(raw)
|
||||
if self._is_error_payload(data):
|
||||
logger.error(f"DM service returned error for dataset files {dataset_id}: {data}")
|
||||
return None
|
||||
if not isinstance(data, dict):
|
||||
logger.error(f"Unexpected dataset files payload type for {dataset_id}: {type(data).__name__}")
|
||||
return None
|
||||
required = ["content", "totalElements", "totalPages", "page", "size"]
|
||||
if not all(k in data for k in required):
|
||||
logger.error(f"Files payload missing required fields for {dataset_id}. Keys: {self._keys(data)}")
|
||||
return None
|
||||
return PagedDatasetFileResponse(**data)
|
||||
except httpx.HTTPError as e:
|
||||
logger.error(f"Failed to get dataset files for {dataset_id}: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"[Unexpected] [GET] dataset files {dataset_id}: \n{e}\nRaw JSON received: \n{raw}")
|
||||
return None
|
||||
|
||||
async def download_file(self, dataset_id: str, file_id: str) -> Optional[bytes]:
|
||||
"""下载文件内容"""
|
||||
try:
|
||||
logger.info(f"Download file: dataset={dataset_id}, file={file_id}")
|
||||
response = await self.client.get(
|
||||
f"/data-management/datasets/{dataset_id}/files/{file_id}/download"
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.content
|
||||
except httpx.HTTPError as e:
|
||||
logger.error(f"Failed to download file {file_id}: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error while downloading file {file_id}: {e}")
|
||||
return None
|
||||
|
||||
async def get_file_download_url(self, dataset_id: str, file_id: str) -> str:
|
||||
"""获取文件下载URL"""
|
||||
return f"{self.base_url}/data-management/datasets/{dataset_id}/files/{file_id}/download"
|
||||
|
||||
async def close(self):
|
||||
"""关闭客户端连接"""
|
||||
await self.client.aclose()
|
||||
logger.info("DM service client connection closed")
|
||||
@@ -1,5 +0,0 @@
|
||||
# app/models/__init__.py
|
||||
|
||||
from .dataset_mapping import DatasetMapping
|
||||
|
||||
__all__ = ["DatasetMapping"]
|
||||
@@ -1,25 +0,0 @@
|
||||
from sqlalchemy import Column, String, DateTime, Boolean, Text
|
||||
from sqlalchemy.sql import func
|
||||
from app.db.database import Base
|
||||
import uuid
|
||||
|
||||
class DatasetMapping(Base):
|
||||
"""数据集映射模型"""
|
||||
|
||||
__tablename__ = "mapping"
|
||||
|
||||
mapping_id = Column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()))
|
||||
source_dataset_id = Column(String(36), nullable=False, comment="源数据集ID")
|
||||
labelling_project_id = Column(String(36), nullable=False, comment="标注项目ID")
|
||||
labelling_project_name = Column(String(255), nullable=True, comment="标注项目名称")
|
||||
created_at = Column(DateTime(timezone=True), server_default=func.now(), comment="创建时间")
|
||||
last_updated_at = Column(DateTime(timezone=True), server_default=func.now(), onupdate=func.now(), comment="最后更新时间")
|
||||
deleted_at = Column(DateTime(timezone=True), nullable=True, comment="删除时间")
|
||||
|
||||
def __repr__(self):
|
||||
return f"<DatasetMapping(uuid={self.mapping_id}, source={self.source_dataset_id}, labelling={self.labelling_project_id})>"
|
||||
|
||||
@property
|
||||
def is_deleted(self) -> bool:
|
||||
"""检查是否已被软删除"""
|
||||
return self.deleted_at is not None
|
||||
Reference in New Issue
Block a user