You've already forked DataMate
feat: add labeling template. refactor: switch to Poetry, build and deploy of backend Python (#79)
* feat: Enhance annotation module with template management and validation - Added DatasetMappingCreateRequest and DatasetMappingUpdateRequest schemas to handle dataset mapping requests with camelCase and snake_case support. - Introduced Annotation Template schemas including CreateAnnotationTemplateRequest, UpdateAnnotationTemplateRequest, and AnnotationTemplateResponse for managing annotation templates. - Implemented AnnotationTemplateService for creating, updating, retrieving, and deleting annotation templates, including validation of configurations and XML generation. - Added utility class LabelStudioConfigValidator for validating Label Studio configurations and XML formats. - Updated database schema for annotation templates and labeling projects to include new fields and constraints. - Seeded initial annotation templates for various use cases including image classification, object detection, and text classification. * feat: Enhance TemplateForm with improved validation and dynamic field rendering; update LabelStudio config validation for camelCase support * feat: Update docker-compose.yml to mark datamate dataset volume and network as external * feat: Add tag configuration management and related components - Introduced new components for tag selection and browsing in the frontend. - Added API endpoint to fetch tag configuration from the backend. - Implemented tag configuration management in the backend, including loading from YAML. - Enhanced template service to support dynamic tag rendering based on configuration. - Updated validation utilities to incorporate tag configuration checks. - Refactored existing code to utilize the new tag configuration structure. * feat: Refactor LabelStudioTagConfig for improved configuration loading and validation * feat: Update Makefile to include backend-python-docker-build in the build process * feat: Migrate to poetry for better deps management * Add pyyaml dependency and update Dockerfile to use Poetry for dependency management - Added pyyaml (>=6.0.3,<7.0.0) to pyproject.toml dependencies. - Updated Dockerfile to install Poetry and manage dependencies using it. - Improved layer caching by copying only dependency files before the application code. - Removed unnecessary installation of build dependencies to keep the final image size small. * feat: Remove duplicated backend-python-docker-build target from Makefile * fix: airflow is not ready for adding yet * feat: update Python version to 3.12 and remove project installation step in Dockerfile
This commit is contained in:
@@ -83,7 +83,7 @@ class DatasetMappingService:
|
||||
labeling_project: LabelingProject
|
||||
) -> DatasetMappingResponse:
|
||||
"""创建数据集映射"""
|
||||
logger.info(f"Create dataset mapping: {labeling_project.dataset_id} -> {labeling_project.labeling_project_id}")
|
||||
logger.debug(f"Create dataset mapping: {labeling_project.dataset_id} -> {labeling_project.labeling_project_id}")
|
||||
|
||||
# Use the passed object directly
|
||||
self.db.add(labeling_project)
|
||||
@@ -201,7 +201,7 @@ class DatasetMappingService:
|
||||
)
|
||||
await self.db.commit()
|
||||
|
||||
if result.rowcount > 0:
|
||||
if result.rowcount and result.rowcount > 0: # type: ignore
|
||||
return await self.get_mapping_by_uuid(mapping_id)
|
||||
return None
|
||||
|
||||
@@ -219,7 +219,7 @@ class DatasetMappingService:
|
||||
)
|
||||
await self.db.commit()
|
||||
|
||||
success = result.rowcount > 0
|
||||
success = result.rowcount and result.rowcount > 0 # type: ignore
|
||||
if success:
|
||||
logger.info(f"Mapping soft-deleted: {mapping_id}")
|
||||
else:
|
||||
|
||||
Reference in New Issue
Block a user