You've already forked DataMate
feature: deer-flow支持从datamate获取外部接入模型 (#83)
* feature: deer-flow支持从datamate获取外部接入模型
This commit is contained in:
@@ -1,177 +0,0 @@
|
||||
diff --git a/src/rag/milvus.py b/src/rag/milvus.py
|
||||
index de589d4..c1b9b98 100644
|
||||
--- a/src/rag/milvus.py
|
||||
+++ b/src/rag/milvus.py
|
||||
@@ -9,7 +9,7 @@ from typing import Any, Dict, Iterable, List, Optional, Sequence, Set
|
||||
from langchain_milvus.vectorstores import Milvus as LangchainMilvus
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from openai import OpenAI
|
||||
-from pymilvus import CollectionSchema, DataType, FieldSchema, MilvusClient
|
||||
+from pymilvus import CollectionSchema, DataType, FieldSchema, MilvusClient, utility
|
||||
|
||||
from src.config.loader import get_bool_env, get_int_env, get_str_env
|
||||
from src.rag.retriever import Chunk, Document, Resource, Retriever
|
||||
@@ -397,6 +397,36 @@ class MilvusRetriever(Retriever):
|
||||
except Exception as e:
|
||||
raise ConnectionError(f"Failed to connect to Milvus: {str(e)}")
|
||||
|
||||
+ def _connect_with_collection(self, collection_name) -> None:
|
||||
+ """Create the underlying Milvus client (idempotent)."""
|
||||
+ try:
|
||||
+ # Check if using Milvus Lite (file-based) vs server-based Milvus
|
||||
+ if self._is_milvus_lite():
|
||||
+ # Use MilvusClient for Milvus Lite (local file database)
|
||||
+ self.client = MilvusClient(self.uri)
|
||||
+ # Ensure collection exists
|
||||
+ self._ensure_collection_exists()
|
||||
+ else:
|
||||
+ connection_args = {
|
||||
+ "uri": self.uri,
|
||||
+ }
|
||||
+ # Add user/password only if provided
|
||||
+ if self.user:
|
||||
+ connection_args["user"] = self.user
|
||||
+ if self.password:
|
||||
+ connection_args["password"] = self.password
|
||||
+
|
||||
+ # Create LangChain client (it will handle collection creation automatically)
|
||||
+ self.client = LangchainMilvus(
|
||||
+ embedding_function=self.embedding_model,
|
||||
+ collection_name=collection_name,
|
||||
+ connection_args=connection_args,
|
||||
+ # optional (if collection already exists with different schema, be careful)
|
||||
+ drop_old=False,
|
||||
+ )
|
||||
+ except Exception as e:
|
||||
+ raise ConnectionError(f"Failed to connect to Milvus: {str(e)}")
|
||||
+
|
||||
def _is_milvus_lite(self) -> bool:
|
||||
"""Return True if the URI points to a local Milvus Lite file.
|
||||
Milvus Lite uses local file paths (often ``*.db``) without an HTTP/HTTPS
|
||||
@@ -476,26 +506,12 @@ class MilvusRetriever(Retriever):
|
||||
else:
|
||||
# Use similarity_search_by_vector for lightweight listing.
|
||||
# If a query is provided embed it; else use a zero vector.
|
||||
- docs: Iterable[Any] = self.client.similarity_search(
|
||||
- query,
|
||||
- k=100,
|
||||
- expr="source == 'examples'", # Limit to 100 results
|
||||
- )
|
||||
- for d in docs:
|
||||
- meta = getattr(d, "metadata", {}) or {}
|
||||
- # check if the resource is in the list of resources
|
||||
- if resources and any(
|
||||
- r.uri == meta.get(self.url_field, "")
|
||||
- or r.uri == f"milvus://{meta.get(self.id_field, '')}"
|
||||
- for r in resources
|
||||
- ):
|
||||
- continue
|
||||
+ connections = utility.list_collections(using=f"{self.uri}-{self.user}")
|
||||
+ for connection in connections:
|
||||
resources.append(
|
||||
Resource(
|
||||
- uri=meta.get(self.url_field, "")
|
||||
- or f"milvus://{meta.get(self.id_field, '')}",
|
||||
- title=meta.get(self.title_field, "")
|
||||
- or meta.get(self.id_field, "Unnamed"),
|
||||
+ uri=f"milvus://{connection}",
|
||||
+ title=connection,
|
||||
description="Stored Milvus document",
|
||||
)
|
||||
)
|
||||
@@ -621,38 +637,32 @@ class MilvusRetriever(Retriever):
|
||||
|
||||
else:
|
||||
# For LangChain Milvus, use similarity search
|
||||
- search_results = self.client.similarity_search_with_score(
|
||||
- query=query, k=self.top_k
|
||||
- )
|
||||
+ if not resources:
|
||||
+ return []
|
||||
|
||||
documents = {}
|
||||
+ for resource in resources:
|
||||
+ self._connect_with_collection(resource.title)
|
||||
+ search_results = self.client.similarity_search_with_score(
|
||||
+ query=query, k=self.top_k
|
||||
+ )
|
||||
|
||||
- for doc, score in search_results:
|
||||
- metadata = doc.metadata or {}
|
||||
- doc_id = metadata.get(self.id_field, "")
|
||||
- title = metadata.get(self.title_field, "")
|
||||
- url = metadata.get(self.url_field, "")
|
||||
- content = doc.page_content
|
||||
-
|
||||
- # Skip if resource filtering is requested and this doc is not in the list
|
||||
- if resources:
|
||||
- doc_in_resources = False
|
||||
- for resource in resources:
|
||||
- if (url and url in resource.uri) or doc_id in resource.uri:
|
||||
- doc_in_resources = True
|
||||
- break
|
||||
- if not doc_in_resources:
|
||||
- continue
|
||||
-
|
||||
- # Create or update document
|
||||
- if doc_id not in documents:
|
||||
- documents[doc_id] = Document(
|
||||
- id=doc_id, url=url, title=title, chunks=[]
|
||||
- )
|
||||
+ for doc, score in search_results:
|
||||
+ metadata = doc.metadata or {}
|
||||
+ doc_id = metadata.get(self.id_field, "")
|
||||
+ title = metadata.get(self.title_field, "")
|
||||
+ url = metadata.get(self.url_field, "")
|
||||
+ content = doc.page_content
|
||||
+
|
||||
+ # Create or update document
|
||||
+ if doc_id not in documents:
|
||||
+ documents[doc_id] = Document(
|
||||
+ id=doc_id, url=url, title=title, chunks=[]
|
||||
+ )
|
||||
|
||||
- # Add chunk to document
|
||||
- chunk = Chunk(content=content, similarity=score)
|
||||
- documents[doc_id].chunks.append(chunk)
|
||||
+ # Add chunk to document
|
||||
+ chunk = Chunk(content=content, similarity=score)
|
||||
+ documents[doc_id].chunks.append(chunk)
|
||||
|
||||
return list(documents.values())
|
||||
|
||||
diff --git a/web/src/components/deer-flow/theme-provider-wrapper.tsx b/web/src/components/deer-flow/theme-provider-wrapper.tsx
|
||||
index 6da0db8..1a99bcf 100644
|
||||
--- a/web/src/components/deer-flow/theme-provider-wrapper.tsx
|
||||
+++ b/web/src/components/deer-flow/theme-provider-wrapper.tsx
|
||||
@@ -18,9 +18,9 @@ export function ThemeProviderWrapper({
|
||||
return (
|
||||
<ThemeProvider
|
||||
attribute="class"
|
||||
- defaultTheme={"dark"}
|
||||
+ defaultTheme={"light"}
|
||||
enableSystem={isChatPage}
|
||||
- forcedTheme={isChatPage ? undefined : "dark"}
|
||||
+ forcedTheme={isChatPage ? undefined : "light"}
|
||||
disableTransitionOnChange
|
||||
>
|
||||
{children}
|
||||
diff --git a/web/src/core/api/resolve-service-url.ts b/web/src/core/api/resolve-service-url.ts
|
||||
index a87b777..d93e987 100644
|
||||
--- a/web/src/core/api/resolve-service-url.ts
|
||||
+++ b/web/src/core/api/resolve-service-url.ts
|
||||
@@ -4,9 +4,13 @@
|
||||
import { env } from "~/env";
|
||||
|
||||
export function resolveServiceURL(path: string) {
|
||||
- let BASE_URL = env.NEXT_PUBLIC_API_URL ?? "http://localhost:8000/api/";
|
||||
+ let BASE_URL = env.NEXT_PUBLIC_API_URL ?? "/api/";
|
||||
if (!BASE_URL.endsWith("/")) {
|
||||
BASE_URL += "/";
|
||||
}
|
||||
+
|
||||
+ const origin = window.location.origin;
|
||||
+ BASE_URL = origin + BASE_URL;
|
||||
+
|
||||
return new URL(path, BASE_URL).toString();
|
||||
}
|
||||
6
runtime/ops/examples/test_operator/__init__.py
Normal file
6
runtime/ops/examples/test_operator/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from datamate.core.base_op import OPERATORS
|
||||
|
||||
OPERATORS.register_module(module_name='TestMapper',
|
||||
module_path="ops.user.test_operator.process")
|
||||
85
runtime/ops/examples/test_operator/metadata.yml
Normal file
85
runtime/ops/examples/test_operator/metadata.yml
Normal file
@@ -0,0 +1,85 @@
|
||||
name: '测试算子'
|
||||
description: '这是一个测试算子。'
|
||||
language: 'python'
|
||||
vendor: 'huawei'
|
||||
raw_id: 'TestMapper'
|
||||
version: '1.0.0'
|
||||
modal: 'text'
|
||||
effect:
|
||||
before: '使用方式很简单,只需要将代码放入Markdown文本中即可,富文本格式可直接复制表情😀使用。'
|
||||
after: '使用方式很简单,只需要将代码放入Markdown文本中即可,富文本格式可直接复制表情使用。'
|
||||
inputs: 'text'
|
||||
outputs: 'text'
|
||||
settings:
|
||||
sliderTest:
|
||||
name: '滑窗测试'
|
||||
description: '这是一个测试滑窗。'
|
||||
type: 'slider'
|
||||
defaultVal: 0.5
|
||||
min: 0
|
||||
max: 1
|
||||
step: 0.1
|
||||
switchTest:
|
||||
name: '开关测试'
|
||||
description: '这是一个开关测试。'
|
||||
type: 'switch'
|
||||
defaultVal: 'true'
|
||||
required: false
|
||||
checkedLabel: '选中'
|
||||
unCheckedLabel: '未选中'
|
||||
radioTest:
|
||||
name: '单选测试'
|
||||
description: '这是一个单选测试。'
|
||||
type: 'radio'
|
||||
defaultVal: 'option1'
|
||||
required: false
|
||||
options:
|
||||
- label: '选项1'
|
||||
value: 'option1'
|
||||
- label: '选项2'
|
||||
value: 'option2'
|
||||
selectTest:
|
||||
name: '下拉框测试'
|
||||
description: '这是一个下拉框测试。'
|
||||
type: 'select'
|
||||
defaultVal: 'option1'
|
||||
required: false
|
||||
options:
|
||||
- label: '选项1'
|
||||
value: 'option1'
|
||||
- label: '选项2'
|
||||
value: 'option2'
|
||||
rangeTest:
|
||||
name: '范围测试'
|
||||
description: '这是一个范围框测试。'
|
||||
type: 'range'
|
||||
properties:
|
||||
- name: 'rangeLeft'
|
||||
type: 'inputNumber'
|
||||
defaultVal: 100
|
||||
min: 0
|
||||
max: 10000
|
||||
step: 1
|
||||
- name: 'rangeRight'
|
||||
type: 'inputNumber'
|
||||
defaultVal: 8000
|
||||
min: 0
|
||||
max: 10000
|
||||
step: 1
|
||||
checkboxTest:
|
||||
name: '多选框测试'
|
||||
description: '这是一个多选框测试。'
|
||||
type: 'checkbox'
|
||||
defaultVal: 'option1,option2'
|
||||
required: false
|
||||
options:
|
||||
- label: '选项1'
|
||||
value: 'option1'
|
||||
- label: '选项2'
|
||||
value: 'option2'
|
||||
inputTest:
|
||||
name: '输入框测试'
|
||||
description: '这是一个输入框测试。'
|
||||
type: 'input'
|
||||
defaultVal: 'Test Input'
|
||||
required: false
|
||||
10
runtime/ops/examples/test_operator/process.py
Normal file
10
runtime/ops/examples/test_operator/process.py
Normal file
@@ -0,0 +1,10 @@
|
||||
|
||||
from typing import Dict, Any
|
||||
|
||||
from datamate.core.base_op import Mapper
|
||||
|
||||
|
||||
class TestMapper(Mapper):
|
||||
def execute(self, sample: Dict[str, Any]) -> Dict[str, Any]:
|
||||
sample[self.text_key] += "\n####################\n"
|
||||
return sample
|
||||
@@ -1,49 +0,0 @@
|
||||
{
|
||||
"name": "text_length_filter",
|
||||
"displayName": "文本长度过滤器",
|
||||
"version": "1.0.0",
|
||||
"author": "DataMate Team",
|
||||
"description": "根据文本长度过滤数据,支持最小和最大长度限制",
|
||||
"category": "数据清洗",
|
||||
"type": "CUSTOM",
|
||||
"inputs": [
|
||||
{
|
||||
"name": "input_data",
|
||||
"type": "array",
|
||||
"description": "输入文本数组",
|
||||
"required": true
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "filtered_data",
|
||||
"type": "array",
|
||||
"description": "过滤后的文本数组"
|
||||
}
|
||||
],
|
||||
"parameters": [
|
||||
{
|
||||
"name": "min_length",
|
||||
"type": "integer",
|
||||
"description": "最小文本长度",
|
||||
"default": 10,
|
||||
"min": 0
|
||||
},
|
||||
{
|
||||
"name": "max_length",
|
||||
"type": "integer",
|
||||
"description": "最大文本长度",
|
||||
"default": 1000,
|
||||
"min": 1
|
||||
},
|
||||
{
|
||||
"name": "text_field",
|
||||
"type": "string",
|
||||
"description": "文本字段名称(如果输入是对象数组)",
|
||||
"default": "text"
|
||||
}
|
||||
],
|
||||
"tags": ["文本处理", "数据过滤", "长度检查"],
|
||||
"documentation": "https://docs.datamate.com/operators/text-length-filter",
|
||||
"repository": "https://github.com/datamate/operators/tree/main/text-length-filter"
|
||||
}
|
||||
@@ -1,135 +0,0 @@
|
||||
"""
|
||||
文本长度过滤器算子
|
||||
根据设定的最小和最大长度过滤文本数据
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import Dict, Any, List, Union
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class TextLengthFilter:
|
||||
"""文本长度过滤器算子"""
|
||||
|
||||
def __init__(self):
|
||||
self.name = "text_length_filter"
|
||||
self.version = "1.0.0"
|
||||
|
||||
def execute(self, config: Dict[str, Any], context: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""执行文本长度过滤"""
|
||||
|
||||
logger.info(f"开始执行算子: {self.name}")
|
||||
|
||||
# 获取参数
|
||||
parameters = config.get('parameters', {})
|
||||
min_length = parameters.get('min_length', 10)
|
||||
max_length = parameters.get('max_length', 1000)
|
||||
text_field = parameters.get('text_field', 'text')
|
||||
|
||||
logger.info(f"过滤参数: min_length={min_length}, max_length={max_length}, text_field={text_field}")
|
||||
|
||||
# 验证参数
|
||||
if min_length < 0:
|
||||
raise ValueError("min_length must be >= 0")
|
||||
if max_length < min_length:
|
||||
raise ValueError("max_length must be >= min_length")
|
||||
|
||||
# 读取输入数据
|
||||
input_path = context['input_path']
|
||||
with open(input_path, 'r', encoding='utf-8') as f:
|
||||
input_data = json.load(f)
|
||||
|
||||
if not isinstance(input_data, list):
|
||||
raise ValueError("输入数据必须是数组格式")
|
||||
|
||||
logger.info(f"输入数据条数: {len(input_data)}")
|
||||
|
||||
# 执行过滤
|
||||
filtered_data = []
|
||||
stats = {
|
||||
'total_input': len(input_data),
|
||||
'too_short': 0,
|
||||
'too_long': 0,
|
||||
'filtered_out': 0,
|
||||
'kept': 0
|
||||
}
|
||||
|
||||
for i, item in enumerate(input_data):
|
||||
try:
|
||||
# 提取文本内容
|
||||
if isinstance(item, str):
|
||||
text = item
|
||||
elif isinstance(item, dict) and text_field in item:
|
||||
text = str(item[text_field])
|
||||
else:
|
||||
logger.warning(f"跳过无法处理的数据项 {i}: {type(item)}")
|
||||
stats['filtered_out'] += 1
|
||||
continue
|
||||
|
||||
# 检查长度
|
||||
text_length = len(text)
|
||||
|
||||
if text_length < min_length:
|
||||
stats['too_short'] += 1
|
||||
stats['filtered_out'] += 1
|
||||
elif text_length > max_length:
|
||||
stats['too_long'] += 1
|
||||
stats['filtered_out'] += 1
|
||||
else:
|
||||
filtered_data.append(item)
|
||||
stats['kept'] += 1
|
||||
|
||||
# 进度报告
|
||||
if (i + 1) % 1000 == 0:
|
||||
progress = (i + 1) / len(input_data) * 100
|
||||
logger.info(f"处理进度: {progress:.1f}% ({i + 1}/{len(input_data)})")
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"处理数据项 {i} 时出错: {e}")
|
||||
stats['filtered_out'] += 1
|
||||
continue
|
||||
|
||||
# 保存结果
|
||||
output_path = context['output_path']
|
||||
with open(output_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(filtered_data, f, ensure_ascii=False, indent=2)
|
||||
|
||||
# 准备返回结果
|
||||
result = {
|
||||
'status': 'success',
|
||||
'statistics': stats,
|
||||
'filter_rate': stats['filtered_out'] / stats['total_input'] * 100 if stats['total_input'] > 0 else 0,
|
||||
'output_path': output_path
|
||||
}
|
||||
|
||||
logger.info(f"过滤完成: {stats}")
|
||||
logger.info(f"过滤率: {result['filter_rate']:.2f}%")
|
||||
|
||||
return result
|
||||
|
||||
def validate_config(self, config: Dict[str, Any]) -> List[str]:
|
||||
"""验证配置参数"""
|
||||
errors = []
|
||||
parameters = config.get('parameters', {})
|
||||
|
||||
min_length = parameters.get('min_length')
|
||||
max_length = parameters.get('max_length')
|
||||
|
||||
if min_length is not None and not isinstance(min_length, int):
|
||||
errors.append("min_length must be an integer")
|
||||
|
||||
if max_length is not None and not isinstance(max_length, int):
|
||||
errors.append("max_length must be an integer")
|
||||
|
||||
if min_length is not None and min_length < 0:
|
||||
errors.append("min_length must be >= 0")
|
||||
|
||||
if min_length is not None and max_length is not None and max_length < min_length:
|
||||
errors.append("max_length must be >= min_length")
|
||||
|
||||
return errors
|
||||
|
||||
def create_operator():
|
||||
"""算子工厂函数"""
|
||||
return TextLengthFilter()
|
||||
Reference in New Issue
Block a user