You've already forked DataMate
feat: 支持运行data-juicer算子 (#215)
* feature: 增加data-juicer算子 * feat: 支持运行data-juicer算子 * feat: 支持data-juicer任务下发 * feat: 支持data-juicer结果数据集归档 * feat: 支持data-juicer结果数据集归档
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
from . import data_juicer_wrapper, datamate_wrapper
|
||||
|
||||
WRAPPERS = {
|
||||
"data_juicer": data_juicer_wrapper,
|
||||
"ray": data_juicer_wrapper,
|
||||
"default": data_juicer_wrapper,
|
||||
"datamate": datamate_wrapper
|
||||
}
|
||||
|
||||
@@ -0,0 +1,150 @@
|
||||
import base64
|
||||
import time
|
||||
from json import dumps as jdumps
|
||||
from json import loads as jloads
|
||||
from typing import Dict, Optional
|
||||
from urllib.parse import urljoin
|
||||
|
||||
import ray
|
||||
import requests
|
||||
import yaml
|
||||
from jsonargparse import ArgumentParser
|
||||
from loguru import logger
|
||||
|
||||
from datamate.core.base_op import FileExporter, SUCCESS_STATUS
|
||||
from datamate.core.constant import Fields
|
||||
from datamate.wrappers.executor import RayExecutor
|
||||
|
||||
DJ_OUTPUT = "outputs"
|
||||
|
||||
|
||||
class DataJuicerClient:
|
||||
def __init__(self, base_url):
|
||||
self.base_url = base_url
|
||||
|
||||
def call_data_juicer_api(self, path: str, params: Optional[Dict] = None, json: Optional[Dict] = None):
|
||||
url = urljoin(self.base_url, path)
|
||||
|
||||
if json is not None:
|
||||
response = requests.post(url, params=params, json=json)
|
||||
else:
|
||||
response = requests.get(url, params=params)
|
||||
|
||||
return jloads(response.text)
|
||||
|
||||
|
||||
def init_config(self, dataset_path: str, export_path, process):
|
||||
"""
|
||||
Initialize Data-Juicer config.
|
||||
|
||||
Args:
|
||||
:param dataset_path: The input dataset path.
|
||||
:param process: The ops
|
||||
:param export_path: The export path.
|
||||
"""
|
||||
dj_config = {
|
||||
"dataset_path": dataset_path,
|
||||
"export_path": export_path,
|
||||
"process": process,
|
||||
"executor_type": "default",
|
||||
}
|
||||
url_path = "/data_juicer/config/get_init_configs"
|
||||
try:
|
||||
res = self.call_data_juicer_api(url_path, params={"cfg": jdumps(dj_config)})
|
||||
except Exception as e:
|
||||
error_msg = f"An unexpected error occurred in calling {url_path}:\n{e}"
|
||||
raise RuntimeError(error_msg)
|
||||
return res["result"]
|
||||
|
||||
def execute_config(self, dj_config: Dict):
|
||||
"""
|
||||
Execute data-juicer data process.
|
||||
|
||||
Args:
|
||||
dj_config: configs of data-juicer
|
||||
"""
|
||||
|
||||
url_path = "/data_juicer/core/DefaultExecutor/run"
|
||||
try:
|
||||
res = self.call_data_juicer_api(url_path, params={"skip_return": True}, json={"cfg": jdumps(dj_config)})
|
||||
if res.get("status") != "success":
|
||||
raise RuntimeError(f"An error occurred in calling {url_path}:\n{res}")
|
||||
return dj_config["export_path"]
|
||||
except Exception as e:
|
||||
error_msg = f"An unexpected error occurred in calling {url_path}:\n{e}"
|
||||
raise RuntimeError(error_msg)
|
||||
|
||||
|
||||
class DataJuicerExecutor(RayExecutor):
|
||||
def __init__(self, cfg = None, meta = None):
|
||||
super().__init__(cfg, meta)
|
||||
self.client = DataJuicerClient(base_url="http://datamate-data-juicer:8000")
|
||||
self.dataset_path = f"/flow/{self.cfg.instance_id}/dataset_on_dj.jsonl"
|
||||
self.export_path = f"/flow/{self.cfg.instance_id}/processed_dataset.jsonl"
|
||||
|
||||
def add_column(self, batch):
|
||||
batch_size = len(batch["filePath"])
|
||||
batch["execute_status"] = [SUCCESS_STATUS] * batch_size
|
||||
batch[Fields.instance_id] = [self.cfg.instance_id] * batch_size
|
||||
batch[Fields.export_path] = [self.cfg.export_path] * batch_size
|
||||
return batch
|
||||
|
||||
def run(self):
|
||||
# 1. 加载数据集
|
||||
logger.info('Loading dataset with Ray...')
|
||||
|
||||
if self.meta:
|
||||
file_content = base64.b64decode(self.meta)
|
||||
lines = file_content.splitlines()
|
||||
dataset = ray.data.from_items([jloads(line) for line in lines])
|
||||
else:
|
||||
dataset = self.load_dataset()
|
||||
|
||||
logger.info('Read data...')
|
||||
dataset = dataset.map(FileExporter().read_file, num_cpus=0.05)
|
||||
|
||||
with open(self.dataset_path, "w", encoding="utf-8") as f:
|
||||
for batch_df in dataset.iter_batches(batch_format="pandas", batch_size=2048):
|
||||
batch_df.to_json(f, orient="records", lines=True, force_ascii=False)
|
||||
|
||||
logger.info('Processing data...')
|
||||
tstart = time.time()
|
||||
try:
|
||||
dj_config = self.client.init_config(self.dataset_path, self.export_path, self.cfg.process)
|
||||
result_path = self.client.execute_config(dj_config)
|
||||
|
||||
processed_dataset = self.load_dataset(result_path)
|
||||
processed_dataset = processed_dataset.map_batches(self.add_column, num_cpus=0.05)
|
||||
processed_dataset = processed_dataset.map(FileExporter().save_file_and_db, num_cpus=0.05)
|
||||
for _ in processed_dataset.iter_batches():
|
||||
pass
|
||||
except Exception as e:
|
||||
logger.error(f"An unexpected error occurred.", e)
|
||||
raise e
|
||||
tend = time.time()
|
||||
logger.info(f'All Ops are done in {tend - tstart:.3f}s.')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = ArgumentParser(description="Create API for Submitting Job to Data-juicer")
|
||||
parser.add_argument("--config_path", type=str, required=False, default="../configs/demo.yaml")
|
||||
parser.add_argument("--flow_config", type=str, required=False, default=None)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
config_path = args.config_path
|
||||
flow_config = args.flow_config
|
||||
|
||||
if flow_config:
|
||||
m_cfg = yaml.safe_load(base64.b64decode(flow_config))
|
||||
else:
|
||||
with open(config_path, "r", encoding='utf-8') as f:
|
||||
m_cfg = yaml.safe_load(f)
|
||||
|
||||
executor = DataJuicerExecutor(m_cfg)
|
||||
try:
|
||||
executor.run()
|
||||
except Exception as e:
|
||||
executor.update_db("FAILED")
|
||||
raise e
|
||||
executor.update_db("COMPLETED")
|
||||
@@ -1,6 +1,11 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import os
|
||||
|
||||
from datamate.scheduler import cmd_scheduler
|
||||
|
||||
|
||||
async def submit(task_id, config_path):
|
||||
await cmd_scheduler.submit(task_id, f"dj-process --config {config_path}")
|
||||
current_dir = os.path.dirname(__file__)
|
||||
|
||||
await cmd_scheduler.submit(task_id, f"python {os.path.join(current_dir, 'data_juicer_executor.py')} "
|
||||
f"--config_path={config_path}")
|
||||
@@ -3,21 +3,18 @@
|
||||
import base64
|
||||
import json
|
||||
import time
|
||||
from typing import Dict
|
||||
|
||||
import ray
|
||||
import yaml
|
||||
from jsonargparse import dict_to_namespace, ArgumentParser
|
||||
from jsonargparse import ArgumentParser
|
||||
from loguru import logger
|
||||
|
||||
from datamate.common.utils import check_valid_path
|
||||
from datamate.core.dataset import RayDataset
|
||||
from datamate.sql_manager.persistence_atction import TaskInfoPersistence
|
||||
from datamate.wrappers.executor import RayExecutor
|
||||
|
||||
import datamate.ops
|
||||
|
||||
|
||||
class RayExecutor:
|
||||
class DataMateExecutor(RayExecutor):
|
||||
"""
|
||||
基于Ray的执行器.
|
||||
|
||||
@@ -25,38 +22,8 @@ class RayExecutor:
|
||||
2. 当前仅加载json文件类型的数据集。
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=None, meta=None):
|
||||
if isinstance(cfg, Dict):
|
||||
self.cfg = dict_to_namespace(cfg)
|
||||
else:
|
||||
logger.error(f"Please set param: cfg as type Dict, but given cfg as type {type(cfg).__name__}")
|
||||
raise TypeError(f"To params cfg, Dict type is required, but type {type(cfg).__name__} is given!")
|
||||
|
||||
self.cfg.process = cfg['process']
|
||||
self.meta = meta
|
||||
|
||||
# init ray
|
||||
logger.info('Initing Ray ...')
|
||||
ray.init()
|
||||
|
||||
def load_meta(self, line):
|
||||
meta = json.loads(line)
|
||||
if meta.get("fileId"):
|
||||
meta["sourceFileId"] = meta.get("fileId")
|
||||
if meta.get("fileName"):
|
||||
meta["sourceFileName"] = meta.get("fileName")
|
||||
if meta.get("fileType"):
|
||||
meta["sourceFileType"] = meta.get("fileType")
|
||||
if meta.get("fileSize"):
|
||||
meta["sourceFileSize"] = meta.get("fileSize")
|
||||
if not meta.get("totalPageNum"):
|
||||
meta["totalPageNum"] = 0
|
||||
if not meta.get("extraFilePath"):
|
||||
meta["extraFilePath"] = None
|
||||
if not meta.get("extraFileType"):
|
||||
meta["extraFileType"] = None
|
||||
meta["dataset_id"] = self.cfg.dataset_id
|
||||
return meta
|
||||
def __init__(self, cfg = None, meta = None):
|
||||
super().__init__(cfg, meta)
|
||||
|
||||
def run(self):
|
||||
# 1. 加载数据集
|
||||
@@ -77,36 +44,13 @@ class RayExecutor:
|
||||
tend = time.time()
|
||||
logger.info(f'All Ops are done in {tend - tstart:.3f}s.')
|
||||
|
||||
dataset.data.materialize()
|
||||
|
||||
def load_dataset(self):
|
||||
retry = 0
|
||||
dataset = None
|
||||
jsonl_file_path = self.cfg.dataset_path
|
||||
while True:
|
||||
if check_valid_path(jsonl_file_path):
|
||||
with open(jsonl_file_path, "r", encoding='utf-8') as meta:
|
||||
lines = meta.readlines()
|
||||
dataset = ray.data.from_items([self.load_meta(line) for line in lines])
|
||||
break
|
||||
if retry < 5:
|
||||
retry += 1
|
||||
time.sleep(retry)
|
||||
continue
|
||||
else:
|
||||
logger.error(f"can not load dataset from dataset_path")
|
||||
raise RuntimeError(f"Load dataset Failed!, dataset_path: {self.cfg.dataset_path}.")
|
||||
|
||||
return dataset
|
||||
|
||||
def update_db(self, status):
|
||||
task_info = TaskInfoPersistence()
|
||||
task_info.update_result(self.cfg.dataset_id, self.cfg.instance_id, status)
|
||||
for _ in dataset.data.iter_batches():
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
parser = ArgumentParser(description="Create API for Submitting Job to Data-juicer")
|
||||
parser = ArgumentParser(description="Create API for Submitting Job to ray")
|
||||
|
||||
parser.add_argument("--config_path", type=str, required=False, default="../configs/demo.yaml")
|
||||
parser.add_argument("--flow_config", type=str, required=False, default=None)
|
||||
@@ -119,10 +63,10 @@ if __name__ == '__main__':
|
||||
if flow_config:
|
||||
m_cfg = yaml.safe_load(base64.b64decode(flow_config))
|
||||
else:
|
||||
with open(config_path, "r", encoding='utf-8') as cfg:
|
||||
m_cfg = yaml.safe_load(cfg)
|
||||
with open(config_path, "r", encoding='utf-8') as f:
|
||||
m_cfg = yaml.safe_load(f)
|
||||
|
||||
executor = RayExecutor(m_cfg)
|
||||
executor = DataMateExecutor(m_cfg)
|
||||
try:
|
||||
executor.run()
|
||||
except Exception as e:
|
||||
|
||||
80
runtime/python-executor/datamate/wrappers/executor.py
Normal file
80
runtime/python-executor/datamate/wrappers/executor.py
Normal file
@@ -0,0 +1,80 @@
|
||||
import json
|
||||
import time
|
||||
from typing import Dict
|
||||
|
||||
import ray
|
||||
from jsonargparse import dict_to_namespace
|
||||
from loguru import logger
|
||||
|
||||
from datamate.common.utils import check_valid_path
|
||||
from datamate.sql_manager.persistence_atction import TaskInfoPersistence
|
||||
|
||||
|
||||
class RayExecutor:
|
||||
"""
|
||||
基于Ray的执行器.
|
||||
|
||||
1. 当前仅支持Mapper,Filter类型的算子。
|
||||
2. 当前仅加载json文件类型的数据集。
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=None, meta=None):
|
||||
if isinstance(cfg, Dict):
|
||||
self.cfg = dict_to_namespace(cfg)
|
||||
else:
|
||||
logger.error(f"Please set param: cfg as type Dict, but given cfg as type {type(cfg).__name__}")
|
||||
raise TypeError(f"To params cfg, Dict type is required, but type {type(cfg).__name__} is given!")
|
||||
|
||||
self.cfg.process = cfg['process']
|
||||
self.meta = meta
|
||||
|
||||
# init ray
|
||||
logger.info('Initing Ray ...')
|
||||
ray.init()
|
||||
|
||||
def load_meta(self, line):
|
||||
meta = json.loads(line)
|
||||
if meta.get("fileId"):
|
||||
meta["sourceFileId"] = meta.get("fileId")
|
||||
if meta.get("fileName"):
|
||||
meta["sourceFileName"] = meta.get("fileName")
|
||||
if meta.get("fileType"):
|
||||
meta["sourceFileType"] = meta.get("fileType")
|
||||
if meta.get("fileSize"):
|
||||
meta["sourceFileSize"] = meta.get("fileSize")
|
||||
if not meta.get("totalPageNum"):
|
||||
meta["totalPageNum"] = 0
|
||||
if not meta.get("extraFilePath"):
|
||||
meta["extraFilePath"] = None
|
||||
if not meta.get("extraFileType"):
|
||||
meta["extraFileType"] = None
|
||||
meta["dataset_id"] = self.cfg.dataset_id
|
||||
return meta
|
||||
|
||||
def run(self):
|
||||
pass
|
||||
|
||||
def load_dataset(self, jsonl_file_path = None):
|
||||
retry = 0
|
||||
dataset = None
|
||||
if jsonl_file_path is None:
|
||||
jsonl_file_path = self.cfg.dataset_path
|
||||
while True:
|
||||
if check_valid_path(jsonl_file_path):
|
||||
with open(jsonl_file_path, "r", encoding='utf-8') as meta:
|
||||
lines = meta.readlines()
|
||||
dataset = ray.data.from_items([self.load_meta(line) for line in lines])
|
||||
break
|
||||
if retry < 5:
|
||||
retry += 1
|
||||
time.sleep(retry)
|
||||
continue
|
||||
else:
|
||||
logger.error(f"can not load dataset from dataset_path")
|
||||
raise RuntimeError(f"Load dataset Failed!, dataset_path: {self.cfg.dataset_path}.")
|
||||
|
||||
return dataset
|
||||
|
||||
def update_db(self, status):
|
||||
task_info = TaskInfoPersistence()
|
||||
task_info.update_result(self.cfg.dataset_id, self.cfg.instance_id, status)
|
||||
Reference in New Issue
Block a user