# -- encoding: utf-8 -- """ Description: 图片饱和度自适应增强 Version: Create: 2025/01/13 """ import time from typing import Dict, Any import cv2 import numpy as np from loguru import logger from datamate.common.utils import bytes_transform from datamate.core.base_op import Mapper class ImgSaturation(Mapper): """图片饱和度自适应增强""" def __init__(self, *args, **kwargs): super(ImgSaturation, self).__init__(*args, **kwargs) # 自适应增强参数 self.factor_threshold = 1.1 # 图片增强因子下限(不作为参数传入)。 self.standard_mean = 130 # 图片增强后的平均饱和度(不作为参数传入)。 self.eps = 1 # 极小值,计算图像饱和度增强因子的时候,防止全黑图片导致的除零错(不作为参数传入)。 self.zeros_ratio_threshold = 0.1 # saturation通道 零值占比率,防止对近似灰度图的图像进行处理。 self.red_channel_threshold = 140 # 图片红色通道阈值,用于抑制饱和度增强因子 def enhance_saturation(self, image_data: np.ndarray, file_name): """饱和度自适应增强方法""" # 打开图像并转换为HSV颜色空间 image_hsv = cv2.cvtColor(image_data, cv2.COLOR_BGR2HSV) s_channel = image_hsv[:, :, 1].copy() del image_hsv # 提取饱和度通道 # 正常的RGB图片,零值占比率比应当小于0.1, 如果高于0.1,可以认为这张图片近似于灰度图 zero_s_ratio = np.count_nonzero(s_channel == 0) / s_channel.size if zero_s_ratio <= self.zeros_ratio_threshold: saturation_channel = s_channel # 灰度图片转成的RGB图片,转为HSV后,S通道值全为0 else: return image_data # 计算饱和度的统计信息 saturation_mean = np.mean(saturation_channel) saturation_factor = self.standard_mean / (saturation_mean + self.eps) # 图片饱和度较高,不需要增强饱和度 if saturation_factor <= 1: logger.info(f"fileName: {file_name}, method: ImgSaturation not need enhancement") return image_data # 计算图片红色通道均值, 如果过大,需要限制saturation factor大小,否则图片会泛红, 产生色彩畸变。 red_channel_mean = np.mean(image_data[:, :, 2]) if red_channel_mean >= self.red_channel_threshold: saturation_factor = min(saturation_factor, 1.5) else: saturation_factor = max(saturation_factor, self.factor_threshold) degrade_image = cv2.cvtColor(image_data, cv2.COLOR_BGR2GRAY) degrade_image = cv2.cvtColor(degrade_image, cv2.COLOR_GRAY2BGR) cv2.addWeighted(image_data, saturation_factor, degrade_image, 1 - saturation_factor, 0, dst=image_data) return image_data def execute(self, sample: Dict[str, Any]): start = time.time() img_bytes = sample[self.data_key] file_name = sample[self.filename_key] file_type = "." + sample[self.filetype_key] if img_bytes: # 进行图片增强 img_data = bytes_transform.bytes_to_numpy(img_bytes) img_data = self.enhance_saturation(img_data, file_name) sample[self.data_key] = bytes_transform.numpy_to_bytes(img_data, file_type) logger.info(f"fileName: {file_name}, method: ImgSaturation costs {time.time() - start:6f} s") return sample