# -- encoding: utf-8 -- """ Description: 医疗图片按坐标切片 Create: 2025/02/08 11:00 """ import copy import time import os from typing import List, Dict, Any import xml.etree.ElementTree as ET from loguru import logger import numpy as np import cv2 from openslide import OpenSlide from datamate.core.base_op import Slicer from datamate.common.utils import bytes_transform class AnnotationSlicer(Slicer): def __init__(self, *args, **kwargs): super(AnnotationSlicer, self).__init__(*args, **kwargs) self.last_ops = True def execute(self, sample: Dict[str, Any]) -> List[Dict[str, Any]]: start = time.time() slide: OpenSlide = OpenSlide(sample[self.filepath_key]) if not isinstance(slide, OpenSlide): logger.error("Not desired object.") annotation_path: str = sample["extraFilePath"] annotations = self.parse_xml_annotations(annotation_path) patch_num = self.auto_coordinate_slicer(sample, slide, annotations) sample["slice_num"] = patch_num file_name = sample[self.filename_key] logger.info(f"fileName: {file_name}, method: CoordinateSlider costs {(time.time() - start):6f} s") return [sample] def parse_xml_annotations(self, xml_path: str) -> List: """ 解析 XML 文件,提取所有 Annotation 的坐标和 PartOfGroup """ tree = ET.parse(xml_path) root = tree.getroot() annotations = [] # 找到所有 标签 annotations_tag = root.find('Annotations') if annotations_tag is None: raise ValueError("未找到 Annotations 标签") # 遍历所有 标签 for annotation in annotations_tag.findall('Annotation'): part_of_group = annotation.get('PartOfGroup') coordinates = [] for coord in annotation.find('Coordinates').findall('Coordinate'): x = float(coord.get('X')) y = float(coord.get('Y')) coordinates.append((x, y)) annotations.append({ 'part_of_group': part_of_group, 'coordinates': np.array(coordinates, dtype=np.int32) }) return annotations def auto_coordinate_slicer( self, original_sample: Dict, slide: OpenSlide, annotations: List ) -> int: """ 自动根据给定的标注文件切片原图像 Return: List[Content] 每个 content 都是一个 data 为 patch 的 content """ wsi_width, wsi_height = slide.dimensions patch_no = 0 # 遍历每个 Annotation for _, annotation in enumerate(annotations): part_of_group = annotation['part_of_group'] coordinates = annotation['coordinates'] # 转换坐标为整数(确保在图像范围内) coordinates = coordinates.clip(min=0, max=(wsi_width, wsi_height)) # 创建掩码(mask)图像 mask = np.zeros((wsi_height, wsi_width), dtype=np.uint8) cv2.fillPoly(mask, [coordinates], 255) # 填充多边形区域为白色 # 找到掩码中的非零区域(肿瘤区域) x, y, w, h = cv2.boundingRect(coordinates) # 获取多边形的边界框 # 读取 WSI 图像的切片区域 region = slide.read_region((x, y), 0, (w, h)) # 转换为 NumPy 数组 region_np = np.array(region.convert("RGB")) patch_sample = copy.deepcopy(original_sample) patch_sample[self.data_key] = bytes_transform.numpy_to_bytes(region_np, '.png') patch_no += 1 self.save_patch_sample(patch_sample, patch_no, save_format="image") logger.info(f">>> {patch_no} annotations found and sliced.") return patch_no