# -- encoding: utf-8 -- """ Description: 图片去阴影插件 Create: 2025/01/16 """ import time from typing import Dict, Any import cv2 import numpy as np from loguru import logger from datamate.common.utils import bytes_transform from datamate.core.base_op import Mapper class ImgShadowRemove(Mapper): """图片阴影去除""" def __init__(self, *args, **kwargs): super(ImgShadowRemove, self).__init__(*args, **kwargs) self.iter_nums = 9 # 闭运算循环次数(不作为参数传入)。 self.k_size = 3 # kernel size大小。 self.clip_limit = 2 # 对比度限制阈值, 数值越大,效果越强。 self.tile_grid = 8 # 图像划分的网格大小, 数值越小,局部效果越明显。 def shadow_removed(self, image_data: np.ndarray): ''' 阴影去除。 Args: image_data: nd.array 格式图片 Returns: 阴影去除后的图片 ''' # 设置kernel大小,进行闭运算 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (self.k_size, self.k_size)) closing = cv2.morphologyEx(image_data, cv2.MORPH_CLOSE, kernel, iterations=self.iter_nums) # 进行~(closing - original)操作 cv2.bitwise_not(closing - image_data, dst=closing) cv2.cvtColor(closing, cv2.COLOR_BGR2Lab, dst=closing) # 获取处理后图像的亮度通道 img_l = cv2.split(closing)[0] del closing # 对img_l进行调节后,替换原图的亮度通道 cv2.cvtColor(image_data, cv2.COLOR_BGR2Lab, dst=image_data) # 创建 CLAHE 对象 clahe = cv2.createCLAHE(clipLimit=self.clip_limit, tileGridSize=(self.tile_grid, self.tile_grid)) # 进行 CLAHE 处理 image_data[:, :, 0] = clahe.apply(img_l) del img_l cv2.cvtColor(image_data, cv2.COLOR_Lab2BGR, dst=image_data) return image_data def execute(self, sample: Dict[str, Any]): start = time.time() img_bytes = sample[self.data_key] file_name = sample[self.filename_key] file_type = "." + sample[self.filetype_key] if img_bytes: # 进行阴影去除 img_data = bytes_transform.bytes_to_numpy(img_bytes) img_data = self.shadow_removed(img_data) sample[self.data_key] = bytes_transform.numpy_to_bytes(img_data, file_type) logger.info(f"fileName: {file_name}, method: ImageShadowRemove costs {time.time() - start:6f} s") return sample