// Add mock files data export const mockFiles = [ { id: "file1", name: "dataset_part_001.jsonl", size: "2.5MB", type: "JSONL" }, { id: "file2", name: "dataset_part_002.jsonl", size: "2.3MB", type: "JSONL" }, { id: "file3", name: "dataset_part_003.jsonl", size: "2.7MB", type: "JSONL" }, { id: "file4", name: "training_data.txt", size: "1.8MB", type: "TXT" }, { id: "file5", name: "validation_set.csv", size: "856KB", type: "CSV" }, { id: "file6", name: "test_samples.json", size: "1.2MB", type: "JSON" }, { id: "file7", name: "raw_text_001.txt", size: "3.1MB", type: "TXT" }, { id: "file8", name: "raw_text_002.txt", size: "2.9MB", type: "TXT" }, ]; export const mockSynthesisTasks: SynthesisTask[] = [ { id: 1, name: "文字生成问答对_判断题", type: "qa", status: "completed", progress: 100, sourceDataset: "orig_20250724_64082", targetCount: 1000, generatedCount: 1000, createdAt: "2025-01-20", template: "判断题生成模板", estimatedTime: "已完成", quality: 95, }, { id: 2, name: "知识蒸馏数据集", type: "distillation", status: "running", progress: 65, sourceDataset: "teacher_model_outputs", targetCount: 5000, generatedCount: 3250, createdAt: "2025-01-22", template: "蒸馏模板v2", estimatedTime: "剩余 15 分钟", quality: 88, }, { id: 3, name: "多模态对话生成", type: "multimodal", status: "failed", progress: 25, sourceDataset: "image_text_pairs", targetCount: 2000, generatedCount: 500, createdAt: "2025-01-23", template: "多模态对话模板", errorMessage: "模型API调用失败,请检查配置", }, { id: 4, name: "金融问答数据生成", type: "qa", status: "pending", progress: 0, sourceDataset: "financial_qa_dataset", targetCount: 800, generatedCount: 0, createdAt: "2025-01-24", template: "金融问答模板", estimatedTime: "等待开始", quality: 0, }, { id: 5, name: "医疗文本蒸馏", type: "distillation", status: "paused", progress: 45, sourceDataset: "medical_corpus", targetCount: 3000, generatedCount: 1350, createdAt: "2025-01-21", template: "医疗蒸馏模板", estimatedTime: "已暂停", quality: 92, }, ]; export const mockTemplates: Template[] = [ { id: 1, name: "判断题生成模板", type: "preset", category: "问答对生成", prompt: `根据给定的文本内容,生成一个判断题。 文本内容:{text} 请按照以下格式生成: 1. 判断题:[基于文本内容的判断题] 2. 答案:[对/错] 3. 解释:[简要解释为什么这个答案是正确的] 要求: - 判断题应该基于文本的核心内容 - 答案必须明确且有依据 - 解释要简洁清晰`, variables: ["text"], description: "根据文本内容生成判断题,适用于教育和培训场景", usageCount: 156, lastUsed: "2025-01-20", quality: 95, }, { id: 2, name: "选择题生成模板", type: "preset", category: "问答对生成", prompt: `基于以下文本,创建一个多选题: {text} 请按照以下格式生成: 问题:[基于文本的问题] A. [选项A] B. [选项B] C. [选项C] D. [选项D] 正确答案:[A/B/C/D] 解析:[详细解释] 要求: - 问题要有一定难度 - 选项要有迷惑性 - 正确答案要有充分依据`, variables: ["text"], description: "生成多选题的标准模板,适用于考试和评估", usageCount: 89, lastUsed: "2025-01-19", quality: 92, }, { id: 3, name: "知识蒸馏模板", type: "preset", category: "蒸馏数据集", prompt: `作为学生模型,学习教师模型的输出: 输入:{input} 教师输出:{teacher_output} 请模仿教师模型的推理过程和输出格式,生成相似质量的回答。 要求: - 保持教师模型的推理逻辑 - 输出格式要一致 - 质量要接近教师模型水平`, variables: ["input", "teacher_output"], description: "用于知识蒸馏的模板,帮助小模型学习大模型的能力", usageCount: 234, lastUsed: "2025-01-22", quality: 88, }, { id: 4, name: "金融问答模板", type: "custom", category: "问答对生成", prompt: `基于金融领域知识,生成专业问答对: 参考内容:{content} 生成格式: 问题:[专业的金融问题] 答案:[准确的专业回答] 关键词:[相关金融术语] 要求: - 问题具有实用性 - 答案准确专业 - 符合金融行业标准`, variables: ["content"], description: "专门用于金融领域的问答对生成", usageCount: 45, lastUsed: "2025-01-18", quality: 89, }, { id: 5, name: "医疗蒸馏模板", type: "custom", category: "蒸馏数据集", prompt: `医疗知识蒸馏模板: 原始医疗文本:{medical_text} 专家标注:{expert_annotation} 生成医疗知识点: 1. 核心概念:[提取关键医疗概念] 2. 临床意义:[说明临床应用价值] 3. 注意事项:[重要提醒和禁忌] 要求: - 确保医疗信息准确性 - 遵循医疗伦理规范 - 适合医学教育使用`, variables: ["medical_text", "expert_annotation"], description: "医疗领域专用的知识蒸馏模板", usageCount: 67, lastUsed: "2025-01-21", quality: 94, }, ];