Files
hhhhsc701 d59c167da4 算子将抽取与落盘固定到流程中 (#134)
* feature: 将抽取动作移到每一个算子中

* feature: 落盘算子改为默认执行

* feature: 优化前端展示

* feature: 使用pyproject管理依赖
2025-12-05 17:26:29 +08:00

62 lines
2.1 KiB
Python

# -- encoding: utf-8 --
"""
Description:
Create: 2025/01/17
"""
import time
from typing import Dict, Any
import cv2
import numpy as np
from loguru import logger
from datamate.common.utils import bytes_transform
from datamate.core.base_op import Mapper
class ImgDenoise(Mapper):
def __init__(self, *args, **kwargs):
super(ImgDenoise, self).__init__(*args, **kwargs)
self._denoise_threshold = kwargs.get("denoise_threshold", 8)
@staticmethod
def _denoise_image(data: object):
"""降噪处理"""
return cv2.medianBlur(data, 3)
def execute(self, sample: Dict[str, Any]):
start = time.time()
self.read_file_first(sample)
img_bytes = sample[self.data_key]
file_name = sample[self.filename_key]
file_type = "." + sample[self.filetype_key]
if img_bytes:
data = bytes_transform.bytes_to_numpy(img_bytes)
denoise_images = self._denoise_images_filter(data, file_name)
sample[self.data_key] = bytes_transform.numpy_to_bytes(denoise_images, file_type)
logger.info(f"fileName: {file_name}, method: ImgDenoise costs {time.time() - start:6f} s")
return sample
def _denoise_images_filter(self, ori_img, file_name):
# 获取原始图片的去噪图片
clean_data = self._denoise_image(ori_img)
# 为方便与其他图片比较可以将图片resize到同一个大小
ori = cv2.resize(ori_img, (112, 112))
dst = cv2.resize(clean_data, (112, 112))
# 计算未降噪图片的灰度值的集合
signal = np.sum(ori ** 2)
# 计算未降噪图片的灰度值与去噪图片灰度值的差值的集合
noise = np.sum((ori - dst) ** 2)
# 根据未去噪图片和差值计算snr (图片信噪比)
snr = 10 * np.log10(signal / noise)
# 对于小于阈值的图片,进行降噪处理
if snr < self._denoise_threshold:
logger.info(f"The image denoise is {self._denoise_threshold}, "
f"which exceeds the threshold of {snr}. {file_name} is filtered out.")
return clean_data
return ori_img