Files
hhhhsc701 d59c167da4 算子将抽取与落盘固定到流程中 (#134)
* feature: 将抽取动作移到每一个算子中

* feature: 落盘算子改为默认执行

* feature: 优化前端展示

* feature: 使用pyproject管理依赖
2025-12-05 17:26:29 +08:00

71 lines
2.5 KiB
Python

# -- encoding: utf-8 --
"""
Description: 图片锐度自适应增强
Version:
Create: 2025/01/13
"""
import time
from typing import Dict, Any
import cv2
import numpy as np
from loguru import logger
from datamate.common.utils import bytes_transform
from datamate.core.base_op import Mapper
class ImgSharpness(Mapper):
"""图片锐度自适应增强"""
def __init__(self, *args, **kwargs):
super(ImgSharpness, self).__init__(*args, **kwargs)
# 自适应增强参数
self.factor_threshold = 1.1 # 图片增强因子下限(不作为参数传入)。
self.standard_mean = 100 # 图片增强后的平均锐度(不作为参数传入)。
self.kernel = self._init_kernel()
self.eps = 1 # 小值,计算图像锐度增强因子的时候,防止全黑图片导致的除零错(不作为参数传入)。
@classmethod
def _init_kernel(cls):
kernel = np.array([[1, 1, 1],
[1, 5, 1],
[1, 1, 1]])
# 对卷积核进行归一化
kernel = kernel / np.sum(kernel)
return kernel
def enhance_sharpness(self, image_data: np.ndarray, file_name):
"""锐度自适应增强方法"""
# 打开图像并转换为灰度图像
image_gray = cv2.cvtColor(image_data, cv2.COLOR_BGR2GRAY)
sharpness = np.abs(cv2.Laplacian(image_gray, cv2.CV_8U)).mean()
sharpness_factor = self.standard_mean / (sharpness + self.eps)
# 图片锐度较高,不需要增强锐度
if sharpness_factor <= 1:
logger.info(f"fileName: {file_name}, method: ImgSharpness not need enhancement")
return image_data
filtered_img = cv2.filter2D(image_data, -1, self.kernel)
cv2.addWeighted(image_data, sharpness_factor, filtered_img, 1.0 - sharpness_factor, 0, dst=image_data)
return image_data
def execute(self, sample: Dict[str, Any]):
start = time.time()
self.read_file_first(sample)
img_bytes = sample[self.data_key]
file_name = sample[self.filename_key]
file_type = "." + sample[self.filetype_key]
if img_bytes:
# 进行图片增强
img_data = bytes_transform.bytes_to_numpy(img_bytes)
img_data = self.enhance_sharpness(img_data, file_name)
sample[self.data_key] = bytes_transform.numpy_to_bytes(img_data, file_type)
logger.info(f"fileName: {file_name}, method: ImgSharpness costs {time.time() - start:6f} s")
return sample