Files
2025-10-21 23:00:48 +08:00

99 lines
3.3 KiB
Python

# -- encoding: utf-8 --
"""
Description: 医疗图片按坐标切片
Create: 2025/02/08 11:00
"""
import copy
import time
from typing import List, Tuple, Dict, Any
import itertools
from loguru import logger
from openslide import OpenSlide
import numpy as np
from datamate.core.base_op import Slicer
from datamate.common.utils import bytes_transform
class SimpleSlicer(Slicer):
def __init__(self, *args, **kwargs):
super(SimpleSlicer, self).__init__(*args, **kwargs)
self._target_size = kwargs.get("sliceSize", [128, 128])
self._overlap = kwargs.get("overlap", 0)
self.last_ops = True
if not isinstance(self._target_size, List):
raise TypeError(f"<targetSize> received as {type(self._target_size)}, but expected list.")
if len(self._target_size) != 2:
raise ValueError(f"<targetSize> has {len(self._target_size)} elements, but expected 2.")
if not all(isinstance(dim, int) for dim in self._target_size):
raise TypeError(f"Elements in <targetSize> must be integers, but got {self._target_size}.")
if not isinstance(self._overlap, (int, float)):
raise TypeError(f"<overlap> received as {type(self._overlap)}, but expected int.")
if self._overlap < 0 or self._overlap > 1:
raise ValueError(
f"<overlap> received an out of range value: {self._overlap}, "
f"but (0 <= overlap <= 1) is expected."
)
def execute(self, sample: Dict[str, Any]) -> List[Dict]:
start = time.time()
slide: OpenSlide = OpenSlide(sample["filePath"])
if not isinstance(slide, OpenSlide):
logger.error("Not desired <Image.Image> object.")
dimensions: tuple[int, int] = slide.dimensions
target_size = self._target_size
overlap = self._overlap
patch_num = self.auto_simple_slicer(sample, slide, dimensions, target_size, overlap)
sample["slice_num"] = patch_num
file_name = sample[self.filename_key]
logger.info(f"fileName: {file_name}, method: CoordinateSlider costs {(time.time() - start):6f} s")
return [sample]
def auto_simple_slicer(
self,
original_sample: Dict[str, Any],
slide: OpenSlide,
dimensions: Tuple[int, int],
target_size: Tuple[int, int],
overlap: float
) -> int:
"""
自动根据给定规格切片原图像
Return:
List[Content] 每个 content 都是一个 data 为 patch 的 content
"""
stride_x, stride_y = map(lambda x: int(x * (1 - overlap)), target_size)
w, h = target_size
patch_no = 0
for x, y in itertools.product(
range(0, dimensions[0] - w + 1, stride_x),
range(0, dimensions[1] - h + 1, stride_y)
):
# 切片
region = slide.read_region((x, y), 0, target_size)
region_np = np.array(region.convert("RGB"))
patch_sample = copy.deepcopy(original_sample)
patch_sample[self.data_key] = bytes_transform.numpy_to_bytes(region_np, ".png")
patch_no += 1
self.save_patch_sample(patch_sample, patch_no, save_format="image")
logger.info(f"One image sliced into pieces: {patch_no}")
return patch_no