You've already forked DataMate
* feat(auto-annotation): initial setup * chore: remove package-lock.json * chore: 清理本地测试脚本与 Maven 设置 * chore: change package-lock.json
604 lines
20 KiB
Python
604 lines
20 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""Simple background worker for auto-annotation tasks.
|
|
|
|
This module runs inside the datamate-runtime container (operator_runtime service).
|
|
It polls `t_dm_auto_annotation_tasks` for pending tasks and performs YOLO
|
|
inference using the ImageObjectDetectionBoundingBox operator, updating
|
|
progress back to the same table so that the datamate-python backend and
|
|
frontend can display real-time status.
|
|
|
|
设计目标(最小可用版本):
|
|
- 单实例 worker,串行处理 `pending` 状态的任务。
|
|
- 对指定数据集下的所有已完成文件逐张执行目标检测。
|
|
- 按已处理图片数更新 `processed_images`、`progress`、`detected_objects`、`status` 等字段。
|
|
- 失败时将任务标记为 `failed` 并记录 `error_message`。
|
|
|
|
注意:
|
|
- 为了保持简单,目前不处理 "running" 状态的恢复逻辑;容器重启时,
|
|
已处于 running 的任务不会被重新拉起,需要后续扩展。
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import os
|
|
import sys
|
|
import threading
|
|
import time
|
|
import uuid
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
from loguru import logger
|
|
from sqlalchemy import text
|
|
|
|
from datamate.sql_manager.sql_manager import SQLManager
|
|
|
|
# 尝试多种导入路径,适配不同的打包/安装方式
|
|
ImageObjectDetectionBoundingBox = None # type: ignore
|
|
try:
|
|
# 优先使用 datamate.ops 路径(源码 COPY 到 /opt/runtime/datamate/ops 情况)
|
|
from datamate.ops.annotation.image_object_detection_bounding_box.process import ( # type: ignore
|
|
ImageObjectDetectionBoundingBox,
|
|
)
|
|
logger.info(
|
|
"Imported ImageObjectDetectionBoundingBox from datamate.ops.annotation.image_object_detection_bounding_box",
|
|
)
|
|
except Exception as e1: # pragma: no cover - 导入失败时仅记录日志,避免整体崩溃
|
|
logger.error(
|
|
"Failed to import ImageObjectDetectionBoundingBox via datamate.ops: {}",
|
|
e1,
|
|
)
|
|
try:
|
|
# 兼容顶层 ops 包安装的情况(通过 ops.pth 暴露)
|
|
from ops.annotation.image_object_detection_bounding_box.process import ( # type: ignore
|
|
ImageObjectDetectionBoundingBox,
|
|
)
|
|
logger.info(
|
|
"Imported ImageObjectDetectionBoundingBox from top-level ops.annotation.image_object_detection_bounding_box",
|
|
)
|
|
except Exception as e2:
|
|
logger.error(
|
|
"Failed to import ImageObjectDetectionBoundingBox via top-level ops package: {}",
|
|
e2,
|
|
)
|
|
ImageObjectDetectionBoundingBox = None
|
|
|
|
|
|
# 进一步兜底:直接从本地 runtime/ops 目录加载算子(开发环境常用场景)
|
|
if ImageObjectDetectionBoundingBox is None:
|
|
try:
|
|
project_root = Path(__file__).resolve().parents[2]
|
|
ops_root = project_root / "ops"
|
|
if ops_root.is_dir():
|
|
# 确保 ops 的父目录在 sys.path 中,这样可以按 "ops.xxx" 导入
|
|
if str(project_root) not in sys.path:
|
|
sys.path.insert(0, str(project_root))
|
|
|
|
from ops.annotation.image_object_detection_bounding_box.process import ( # type: ignore
|
|
ImageObjectDetectionBoundingBox,
|
|
)
|
|
|
|
logger.info(
|
|
"Imported ImageObjectDetectionBoundingBox from local runtime/ops.annotation.image_object_detection_bounding_box",
|
|
)
|
|
else:
|
|
logger.warning(
|
|
"Local runtime/ops directory not found when trying to import ImageObjectDetectionBoundingBox: {}",
|
|
ops_root,
|
|
)
|
|
except Exception as e3: # pragma: no cover - 兜底失败仅记录日志
|
|
logger.error(
|
|
"Failed to import ImageObjectDetectionBoundingBox from local runtime/ops: {}",
|
|
e3,
|
|
)
|
|
ImageObjectDetectionBoundingBox = None
|
|
|
|
|
|
POLL_INTERVAL_SECONDS = float(os.getenv("AUTO_ANNOTATION_POLL_INTERVAL", "5"))
|
|
|
|
DEFAULT_OUTPUT_ROOT = os.getenv(
|
|
"AUTO_ANNOTATION_OUTPUT_ROOT", "/dataset"
|
|
)
|
|
|
|
|
|
def _fetch_pending_task() -> Optional[Dict[str, Any]]:
|
|
"""从 t_dm_auto_annotation_tasks 中取出一个 pending 任务。"""
|
|
|
|
sql = text(
|
|
"""
|
|
SELECT id, name, dataset_id, dataset_name, config, file_ids, status,
|
|
total_images, processed_images, detected_objects, output_path
|
|
FROM t_dm_auto_annotation_tasks
|
|
WHERE status = 'pending' AND deleted_at IS NULL
|
|
ORDER BY created_at ASC
|
|
LIMIT 1
|
|
"""
|
|
)
|
|
|
|
with SQLManager.create_connect() as conn:
|
|
result = conn.execute(sql).fetchone()
|
|
if not result:
|
|
return None
|
|
row = dict(result._mapping) # type: ignore[attr-defined]
|
|
|
|
try:
|
|
row["config"] = json.loads(row["config"]) if row.get("config") else {}
|
|
except Exception:
|
|
row["config"] = {}
|
|
|
|
try:
|
|
raw_ids = row.get("file_ids")
|
|
if not raw_ids:
|
|
row["file_ids"] = None
|
|
elif isinstance(raw_ids, str):
|
|
row["file_ids"] = json.loads(raw_ids)
|
|
else:
|
|
row["file_ids"] = raw_ids
|
|
except Exception:
|
|
row["file_ids"] = None
|
|
return row
|
|
|
|
|
|
def _update_task_status(
|
|
task_id: str,
|
|
*,
|
|
status: str,
|
|
progress: Optional[int] = None,
|
|
processed_images: Optional[int] = None,
|
|
detected_objects: Optional[int] = None,
|
|
total_images: Optional[int] = None,
|
|
output_path: Optional[str] = None,
|
|
error_message: Optional[str] = None,
|
|
completed: bool = False,
|
|
) -> None:
|
|
"""更新任务的状态和统计字段。"""
|
|
|
|
fields: List[str] = ["status = :status", "updated_at = :updated_at"]
|
|
params: Dict[str, Any] = {
|
|
"task_id": task_id,
|
|
"status": status,
|
|
"updated_at": datetime.now(),
|
|
}
|
|
|
|
if progress is not None:
|
|
fields.append("progress = :progress")
|
|
params["progress"] = int(progress)
|
|
if processed_images is not None:
|
|
fields.append("processed_images = :processed_images")
|
|
params["processed_images"] = int(processed_images)
|
|
if detected_objects is not None:
|
|
fields.append("detected_objects = :detected_objects")
|
|
params["detected_objects"] = int(detected_objects)
|
|
if total_images is not None:
|
|
fields.append("total_images = :total_images")
|
|
params["total_images"] = int(total_images)
|
|
if output_path is not None:
|
|
fields.append("output_path = :output_path")
|
|
params["output_path"] = output_path
|
|
if error_message is not None:
|
|
fields.append("error_message = :error_message")
|
|
params["error_message"] = error_message[:2000]
|
|
if completed:
|
|
fields.append("completed_at = :completed_at")
|
|
params["completed_at"] = datetime.now()
|
|
|
|
sql = text(
|
|
f"""
|
|
UPDATE t_dm_auto_annotation_tasks
|
|
SET {', '.join(fields)}
|
|
WHERE id = :task_id
|
|
"""
|
|
)
|
|
|
|
with SQLManager.create_connect() as conn:
|
|
conn.execute(sql, params)
|
|
|
|
|
|
def _load_dataset_files(dataset_id: str) -> List[Tuple[str, str, str]]:
|
|
"""加载指定数据集下的所有已完成文件。"""
|
|
|
|
sql = text(
|
|
"""
|
|
SELECT id, file_path, file_name
|
|
FROM t_dm_dataset_files
|
|
WHERE dataset_id = :dataset_id
|
|
AND status = 'ACTIVE'
|
|
ORDER BY created_at ASC
|
|
"""
|
|
)
|
|
|
|
with SQLManager.create_connect() as conn:
|
|
rows = conn.execute(sql, {"dataset_id": dataset_id}).fetchall()
|
|
return [(str(r[0]), str(r[1]), str(r[2])) for r in rows]
|
|
|
|
|
|
def _load_files_by_ids(file_ids: List[str]) -> List[Tuple[str, str, str]]:
|
|
"""根据文件ID列表加载文件记录,支持跨多个数据集。"""
|
|
|
|
if not file_ids:
|
|
return []
|
|
|
|
placeholders = ", ".join(f":id{i}" for i in range(len(file_ids)))
|
|
sql = text(
|
|
f"""
|
|
SELECT id, file_path, file_name
|
|
FROM t_dm_dataset_files
|
|
WHERE id IN ({placeholders})
|
|
AND status = 'ACTIVE'
|
|
ORDER BY created_at ASC
|
|
"""
|
|
)
|
|
params = {f"id{i}": str(fid) for i, fid in enumerate(file_ids)}
|
|
|
|
with SQLManager.create_connect() as conn:
|
|
rows = conn.execute(sql, params).fetchall()
|
|
return [(str(r[0]), str(r[1]), str(r[2])) for r in rows]
|
|
|
|
|
|
def _ensure_output_dir(output_dir: str) -> str:
|
|
"""确保输出目录及其 images/、annotations/ 子目录存在。"""
|
|
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
os.makedirs(os.path.join(output_dir, "images"), exist_ok=True)
|
|
os.makedirs(os.path.join(output_dir, "annotations"), exist_ok=True)
|
|
return output_dir
|
|
|
|
|
|
def _create_output_dataset(
|
|
source_dataset_id: str,
|
|
source_dataset_name: str,
|
|
output_dataset_name: str,
|
|
) -> Tuple[str, str]:
|
|
"""为自动标注结果创建一个新的数据集并返回 (dataset_id, path)。"""
|
|
|
|
new_dataset_id = str(uuid.uuid4())
|
|
dataset_base_path = DEFAULT_OUTPUT_ROOT.rstrip("/") or "/dataset"
|
|
output_dir = os.path.join(dataset_base_path, new_dataset_id)
|
|
|
|
description = (
|
|
f"Auto annotations for dataset {source_dataset_name or source_dataset_id}"[:255]
|
|
)
|
|
|
|
sql = text(
|
|
"""
|
|
INSERT INTO t_dm_datasets (id, name, description, dataset_type, path, status)
|
|
VALUES (:id, :name, :description, :dataset_type, :path, :status)
|
|
"""
|
|
)
|
|
params = {
|
|
"id": new_dataset_id,
|
|
"name": output_dataset_name,
|
|
"description": description,
|
|
"dataset_type": "IMAGE",
|
|
"path": output_dir,
|
|
"status": "ACTIVE",
|
|
}
|
|
|
|
with SQLManager.create_connect() as conn:
|
|
conn.execute(sql, params)
|
|
|
|
return new_dataset_id, output_dir
|
|
|
|
|
|
def _register_output_dataset(
|
|
task_id: str,
|
|
output_dataset_id: str,
|
|
output_dir: str,
|
|
output_dataset_name: str,
|
|
total_images: int,
|
|
) -> None:
|
|
"""将自动标注结果注册到新建的数据集。"""
|
|
|
|
images_dir = os.path.join(output_dir, "images")
|
|
if not os.path.isdir(images_dir):
|
|
logger.warning(
|
|
"Auto-annotation images directory not found for task {}: {}",
|
|
task_id,
|
|
images_dir,
|
|
)
|
|
return
|
|
|
|
image_files: List[Tuple[str, str, int]] = []
|
|
annotation_files: List[Tuple[str, str, int]] = []
|
|
total_size = 0
|
|
|
|
for file_name in sorted(os.listdir(images_dir)):
|
|
file_path = os.path.join(images_dir, file_name)
|
|
if not os.path.isfile(file_path):
|
|
continue
|
|
try:
|
|
file_size = os.path.getsize(file_path)
|
|
except OSError:
|
|
file_size = 0
|
|
image_files.append((file_name, file_path, int(file_size)))
|
|
total_size += int(file_size)
|
|
|
|
annotations_dir = os.path.join(output_dir, "annotations")
|
|
if os.path.isdir(annotations_dir):
|
|
for file_name in sorted(os.listdir(annotations_dir)):
|
|
file_path = os.path.join(annotations_dir, file_name)
|
|
if not os.path.isfile(file_path):
|
|
continue
|
|
try:
|
|
file_size = os.path.getsize(file_path)
|
|
except OSError:
|
|
file_size = 0
|
|
annotation_files.append((file_name, file_path, int(file_size)))
|
|
total_size += int(file_size)
|
|
|
|
if not image_files:
|
|
logger.warning(
|
|
"No image files found in auto-annotation output for task {}: {}",
|
|
task_id,
|
|
images_dir,
|
|
)
|
|
return
|
|
|
|
insert_file_sql = text(
|
|
"""
|
|
INSERT INTO t_dm_dataset_files (
|
|
id, dataset_id, file_name, file_path, file_type, file_size, status
|
|
) VALUES (
|
|
:id, :dataset_id, :file_name, :file_path, :file_type, :file_size, :status
|
|
)
|
|
"""
|
|
)
|
|
update_dataset_stat_sql = text(
|
|
"""
|
|
UPDATE t_dm_datasets
|
|
SET file_count = COALESCE(file_count, 0) + :add_count,
|
|
size_bytes = COALESCE(size_bytes, 0) + :add_size
|
|
WHERE id = :dataset_id
|
|
"""
|
|
)
|
|
|
|
with SQLManager.create_connect() as conn:
|
|
added_count = 0
|
|
|
|
for file_name, file_path, file_size in image_files:
|
|
ext = os.path.splitext(file_name)[1].lstrip(".").upper() or None
|
|
conn.execute(
|
|
insert_file_sql,
|
|
{
|
|
"id": str(uuid.uuid4()),
|
|
"dataset_id": output_dataset_id,
|
|
"file_name": file_name,
|
|
"file_path": file_path,
|
|
"file_type": ext,
|
|
"file_size": int(file_size),
|
|
"status": "ACTIVE",
|
|
},
|
|
)
|
|
added_count += 1
|
|
|
|
for file_name, file_path, file_size in annotation_files:
|
|
ext = os.path.splitext(file_name)[1].lstrip(".").upper() or None
|
|
conn.execute(
|
|
insert_file_sql,
|
|
{
|
|
"id": str(uuid.uuid4()),
|
|
"dataset_id": output_dataset_id,
|
|
"file_name": file_name,
|
|
"file_path": file_path,
|
|
"file_type": ext,
|
|
"file_size": int(file_size),
|
|
"status": "ACTIVE",
|
|
},
|
|
)
|
|
added_count += 1
|
|
|
|
if added_count > 0:
|
|
conn.execute(
|
|
update_dataset_stat_sql,
|
|
{
|
|
"dataset_id": output_dataset_id,
|
|
"add_count": added_count,
|
|
"add_size": int(total_size),
|
|
},
|
|
)
|
|
|
|
logger.info(
|
|
"Registered auto-annotation output into dataset: dataset_id={}, name={}, added_files={}, added_size_bytes={}, task_id={}, output_dir={}",
|
|
output_dataset_id,
|
|
output_dataset_name,
|
|
len(image_files) + len(annotation_files),
|
|
total_size,
|
|
task_id,
|
|
output_dir,
|
|
)
|
|
|
|
|
|
def _process_single_task(task: Dict[str, Any]) -> None:
|
|
"""执行单个自动标注任务。"""
|
|
|
|
if ImageObjectDetectionBoundingBox is None:
|
|
logger.error(
|
|
"YOLO operator not available (import failed earlier), skip auto-annotation task: {}",
|
|
task["id"],
|
|
)
|
|
_update_task_status(
|
|
task["id"],
|
|
status="failed",
|
|
error_message="YOLO operator not available in runtime container",
|
|
)
|
|
return
|
|
|
|
task_id = str(task["id"])
|
|
dataset_id = str(task["dataset_id"])
|
|
task_name = str(task.get("name") or "")
|
|
source_dataset_name = str(task.get("dataset_name") or "")
|
|
cfg: Dict[str, Any] = task.get("config") or {}
|
|
selected_file_ids: Optional[List[str]] = task.get("file_ids") or None
|
|
|
|
model_size = cfg.get("modelSize", "l")
|
|
conf_threshold = float(cfg.get("confThreshold", 0.7))
|
|
target_classes = cfg.get("targetClasses", []) or []
|
|
output_dataset_name = cfg.get("outputDatasetName")
|
|
|
|
if not output_dataset_name:
|
|
base_name = source_dataset_name or task_name or f"dataset-{dataset_id[:8]}"
|
|
output_dataset_name = f"{base_name}_auto_{task_id[:8]}"
|
|
|
|
logger.info(
|
|
"Start processing auto-annotation task: id={}, dataset_id={}, model_size={}, conf_threshold={}, target_classes={}, output_dataset_name={}",
|
|
task_id,
|
|
dataset_id,
|
|
model_size,
|
|
conf_threshold,
|
|
target_classes,
|
|
output_dataset_name,
|
|
)
|
|
|
|
_update_task_status(task_id, status="running", progress=0)
|
|
|
|
if selected_file_ids:
|
|
all_files = _load_files_by_ids(selected_file_ids)
|
|
else:
|
|
all_files = _load_dataset_files(dataset_id)
|
|
|
|
files = [(path, name) for _, path, name in all_files]
|
|
|
|
total_images = len(files)
|
|
if total_images == 0:
|
|
logger.warning("No files found for dataset {} when running auto-annotation task {}", dataset_id, task_id)
|
|
_update_task_status(
|
|
task_id,
|
|
status="completed",
|
|
progress=100,
|
|
total_images=0,
|
|
processed_images=0,
|
|
detected_objects=0,
|
|
completed=True,
|
|
output_path=None,
|
|
)
|
|
return
|
|
|
|
output_dataset_id, output_dir = _create_output_dataset(
|
|
source_dataset_id=dataset_id,
|
|
source_dataset_name=source_dataset_name,
|
|
output_dataset_name=output_dataset_name,
|
|
)
|
|
output_dir = _ensure_output_dir(output_dir)
|
|
|
|
try:
|
|
detector = ImageObjectDetectionBoundingBox(
|
|
modelSize=model_size,
|
|
confThreshold=conf_threshold,
|
|
targetClasses=target_classes,
|
|
outputDir=output_dir,
|
|
)
|
|
except Exception as e:
|
|
logger.error("Failed to init YOLO detector for task {}: {}", task_id, e)
|
|
_update_task_status(
|
|
task_id,
|
|
status="failed",
|
|
total_images=total_images,
|
|
processed_images=0,
|
|
detected_objects=0,
|
|
error_message=f"Init YOLO detector failed: {e}",
|
|
)
|
|
return
|
|
|
|
processed = 0
|
|
detected_total = 0
|
|
|
|
for file_path, file_name in files:
|
|
try:
|
|
sample = {
|
|
"image": file_path,
|
|
"filename": file_name,
|
|
}
|
|
result = detector.execute(sample)
|
|
|
|
annotations = (result or {}).get("annotations", {})
|
|
detections = annotations.get("detections", [])
|
|
detected_total += len(detections)
|
|
processed += 1
|
|
|
|
progress = int(processed * 100 / total_images) if total_images > 0 else 100
|
|
|
|
_update_task_status(
|
|
task_id,
|
|
status="running",
|
|
progress=progress,
|
|
processed_images=processed,
|
|
detected_objects=detected_total,
|
|
total_images=total_images,
|
|
output_path=output_dir,
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
"Failed to process image for task {}: file_path={}, error={}",
|
|
task_id,
|
|
file_path,
|
|
e,
|
|
)
|
|
continue
|
|
|
|
_update_task_status(
|
|
task_id,
|
|
status="completed",
|
|
progress=100,
|
|
processed_images=processed,
|
|
detected_objects=detected_total,
|
|
total_images=total_images,
|
|
output_path=output_dir,
|
|
completed=True,
|
|
)
|
|
|
|
logger.info(
|
|
"Completed auto-annotation task: id={}, total_images={}, processed={}, detected_objects={}, output_path={}",
|
|
task_id,
|
|
total_images,
|
|
processed,
|
|
detected_total,
|
|
output_dir,
|
|
)
|
|
|
|
if output_dataset_name and output_dataset_id:
|
|
try:
|
|
_register_output_dataset(
|
|
task_id=task_id,
|
|
output_dataset_id=output_dataset_id,
|
|
output_dir=output_dir,
|
|
output_dataset_name=output_dataset_name,
|
|
total_images=total_images,
|
|
)
|
|
except Exception as e: # pragma: no cover - 防御性日志
|
|
logger.error(
|
|
"Failed to register auto-annotation output as dataset for task {}: {}",
|
|
task_id,
|
|
e,
|
|
)
|
|
|
|
|
|
def _worker_loop() -> None:
|
|
"""Worker 主循环,在独立线程中运行。"""
|
|
|
|
logger.info(
|
|
"Auto-annotation worker started with poll interval {} seconds, output root {}",
|
|
POLL_INTERVAL_SECONDS,
|
|
DEFAULT_OUTPUT_ROOT,
|
|
)
|
|
|
|
while True:
|
|
try:
|
|
task = _fetch_pending_task()
|
|
if not task:
|
|
time.sleep(POLL_INTERVAL_SECONDS)
|
|
continue
|
|
|
|
_process_single_task(task)
|
|
except Exception as e: # pragma: no cover - 防御性日志
|
|
logger.error("Auto-annotation worker loop error: {}", e)
|
|
time.sleep(POLL_INTERVAL_SECONDS)
|
|
|
|
|
|
def start_auto_annotation_worker() -> None:
|
|
"""在后台线程中启动自动标注 worker。"""
|
|
|
|
thread = threading.Thread(target=_worker_loop, name="auto-annotation-worker", daemon=True)
|
|
thread.start()
|
|
logger.info("Auto-annotation worker thread started: {}", thread.name)
|