You've already forked DataMate
* feature: 将抽取动作移到每一个算子中 * feature: 落盘算子改为默认执行 * feature: 优化前端展示 * feature: 使用pyproject管理依赖
74 lines
2.5 KiB
Python
74 lines
2.5 KiB
Python
# -- encoding: utf-8 --
|
|
|
|
"""
|
|
Description: 图片去阴影插件
|
|
Create: 2025/01/16
|
|
"""
|
|
import time
|
|
|
|
from typing import Dict, Any
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from loguru import logger
|
|
|
|
from datamate.common.utils import bytes_transform
|
|
from datamate.core.base_op import Mapper
|
|
|
|
|
|
class ImgShadowRemove(Mapper):
|
|
"""图片阴影去除"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super(ImgShadowRemove, self).__init__(*args, **kwargs)
|
|
self.iter_nums = 9 # 闭运算循环次数(不作为参数传入)。
|
|
self.k_size = 3 # kernel size大小。
|
|
self.clip_limit = 2 # 对比度限制阈值, 数值越大,效果越强。
|
|
self.tile_grid = 8 # 图像划分的网格大小, 数值越小,局部效果越明显。
|
|
|
|
def shadow_removed(self, image_data: np.ndarray):
|
|
'''
|
|
阴影去除。
|
|
|
|
Args:
|
|
image_data: nd.array 格式图片
|
|
Returns:
|
|
阴影去除后的图片
|
|
'''
|
|
# 设置kernel大小,进行闭运算
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (self.k_size, self.k_size))
|
|
closing = cv2.morphologyEx(image_data, cv2.MORPH_CLOSE, kernel, iterations=self.iter_nums)
|
|
|
|
# 进行~(closing - original)操作
|
|
cv2.bitwise_not(closing - image_data, dst=closing)
|
|
cv2.cvtColor(closing, cv2.COLOR_BGR2Lab, dst=closing)
|
|
|
|
# 获取处理后图像的亮度通道
|
|
img_l = cv2.split(closing)[0]
|
|
del closing
|
|
|
|
# 对img_l进行调节后,替换原图的亮度通道
|
|
cv2.cvtColor(image_data, cv2.COLOR_BGR2Lab, dst=image_data)
|
|
# 创建 CLAHE 对象
|
|
clahe = cv2.createCLAHE(clipLimit=self.clip_limit, tileGridSize=(self.tile_grid, self.tile_grid))
|
|
# 进行 CLAHE 处理
|
|
image_data[:, :, 0] = clahe.apply(img_l)
|
|
del img_l
|
|
|
|
cv2.cvtColor(image_data, cv2.COLOR_Lab2BGR, dst=image_data)
|
|
return image_data
|
|
|
|
def execute(self, sample: Dict[str, Any]):
|
|
start = time.time()
|
|
self.read_file_first(sample)
|
|
img_bytes = sample[self.data_key]
|
|
file_name = sample[self.filename_key]
|
|
file_type = "." + sample[self.filetype_key]
|
|
if img_bytes:
|
|
# 进行阴影去除
|
|
img_data = bytes_transform.bytes_to_numpy(img_bytes)
|
|
img_data = self.shadow_removed(img_data)
|
|
sample[self.data_key] = bytes_transform.numpy_to_bytes(img_data, file_type)
|
|
logger.info(f"fileName: {file_name}, method: ImageShadowRemove costs {time.time() - start:6f} s")
|
|
return sample
|