Files
DataMate/runtime/datamate-python/app/module/annotation/schema/mapping.py
Jason Wang c5ccc56cca feat: Add labeling template (#72)
* feat: Enhance annotation module with template management and validation

- Added DatasetMappingCreateRequest and DatasetMappingUpdateRequest schemas to handle dataset mapping requests with camelCase and snake_case support.
- Introduced Annotation Template schemas including CreateAnnotationTemplateRequest, UpdateAnnotationTemplateRequest, and AnnotationTemplateResponse for managing annotation templates.
- Implemented AnnotationTemplateService for creating, updating, retrieving, and deleting annotation templates, including validation of configurations and XML generation.
- Added utility class LabelStudioConfigValidator for validating Label Studio configurations and XML formats.
- Updated database schema for annotation templates and labeling projects to include new fields and constraints.
- Seeded initial annotation templates for various use cases including image classification, object detection, and text classification.

* feat: Enhance TemplateForm with improved validation and dynamic field rendering; update LabelStudio config validation for camelCase support

* feat: Update docker-compose.yml to mark datamate dataset volume and network as external
2025-11-11 09:14:14 +08:00

56 lines
2.7 KiB
Python

from pydantic import Field, BaseModel
from typing import Optional
from datetime import datetime
from app.module.shared.schema import BaseResponseModel
from app.module.shared.schema import StandardResponse
class DatasetMappingCreateRequest(BaseModel):
"""数据集映射 创建 请求模型
Accept both snake_case and camelCase field names from frontend JSON by
declaring explicit aliases. Frontend sends `datasetId`, `name`,
`description`, `templateId` (camelCase), so provide aliases so pydantic will map them
to the internal attributes used in the service code (dataset_id, name,
description, template_id).
"""
dataset_id: str = Field(..., alias="datasetId", description="源数据集ID")
name: Optional[str] = Field(None, alias="name", description="标注项目名称")
description: Optional[str] = Field(None, alias="description", description="标注项目描述")
template_id: Optional[str] = Field(None, alias="templateId", description="标注模板ID")
class Config:
# allow population by field name when constructing model programmatically
validate_by_name = True
class DatasetMappingCreateResponse(BaseResponseModel):
"""数据集映射 创建 响应模型"""
id: str = Field(..., description="映射UUID")
labeling_project_id: str = Field(..., description="Label Studio项目ID")
labeling_project_name: str = Field(..., description="Label Studio项目名称")
class DatasetMappingUpdateRequest(BaseResponseModel):
"""数据集映射 更新 请求模型"""
dataset_id: Optional[str] = Field(None, description="源数据集ID")
class DatasetMappingResponse(BaseModel):
"""数据集映射 查询 响应模型"""
id: str = Field(..., description="映射UUID")
dataset_id: str = Field(..., alias="datasetId", description="源数据集ID")
dataset_name: Optional[str] = Field(None, alias="datasetName", description="数据集名称")
labeling_project_id: str = Field(..., alias="labelingProjectId", description="标注项目ID")
name: Optional[str] = Field(None, description="标注项目名称")
description: Optional[str] = Field(None, description="标注项目描述")
created_at: datetime = Field(..., alias="createdAt", description="创建时间")
updated_at: Optional[datetime] = Field(None, alias="updatedAt", description="更新时间")
deleted_at: Optional[datetime] = Field(None, alias="deletedAt", description="删除时间")
class Config:
from_attributes = True
populate_by_name = True
class DeleteDatasetResponse(BaseResponseModel):
"""删除数据集响应模型"""
id: str = Field(..., description="映射UUID")
status: str = Field(..., description="删除状态")