You've already forked DataMate
70 lines
2.5 KiB
Python
70 lines
2.5 KiB
Python
# -- encoding: utf-8 --
|
|
|
|
"""
|
|
Description: 图片锐度自适应增强
|
|
Version:
|
|
Create: 2025/01/13
|
|
"""
|
|
|
|
import time
|
|
|
|
from typing import Dict, Any
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from loguru import logger
|
|
|
|
from datamate.common.utils import bytes_transform
|
|
from datamate.core.base_op import Mapper
|
|
|
|
|
|
class ImgSharpness(Mapper):
|
|
"""图片锐度自适应增强"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super(ImgSharpness, self).__init__(*args, **kwargs)
|
|
# 自适应增强参数
|
|
self.factor_threshold = 1.1 # 图片增强因子下限(不作为参数传入)。
|
|
self.standard_mean = 100 # 图片增强后的平均锐度(不作为参数传入)。
|
|
self.kernel = self._init_kernel()
|
|
self.eps = 1 # 小值,计算图像锐度增强因子的时候,防止全黑图片导致的除零错(不作为参数传入)。
|
|
|
|
@classmethod
|
|
def _init_kernel(cls):
|
|
kernel = np.array([[1, 1, 1],
|
|
[1, 5, 1],
|
|
[1, 1, 1]])
|
|
# 对卷积核进行归一化
|
|
kernel = kernel / np.sum(kernel)
|
|
return kernel
|
|
|
|
def enhance_sharpness(self, image_data: np.ndarray, file_name):
|
|
"""锐度自适应增强方法"""
|
|
|
|
# 打开图像并转换为灰度图像
|
|
image_gray = cv2.cvtColor(image_data, cv2.COLOR_BGR2GRAY)
|
|
sharpness = np.abs(cv2.Laplacian(image_gray, cv2.CV_8U)).mean()
|
|
sharpness_factor = self.standard_mean / (sharpness + self.eps)
|
|
|
|
# 图片锐度较高,不需要增强锐度
|
|
if sharpness_factor <= 1:
|
|
logger.info(f"fileName: {file_name}, method: ImgSharpness not need enhancement")
|
|
return image_data
|
|
|
|
filtered_img = cv2.filter2D(image_data, -1, self.kernel)
|
|
cv2.addWeighted(image_data, sharpness_factor, filtered_img, 1.0 - sharpness_factor, 0, dst=image_data)
|
|
return image_data
|
|
|
|
def execute(self, sample: Dict[str, Any]):
|
|
start = time.time()
|
|
img_bytes = sample[self.data_key]
|
|
file_name = sample[self.filename_key]
|
|
file_type = "." + sample[self.filetype_key]
|
|
if img_bytes:
|
|
# 进行图片增强
|
|
img_data = bytes_transform.bytes_to_numpy(img_bytes)
|
|
img_data = self.enhance_sharpness(img_data, file_name)
|
|
sample[self.data_key] = bytes_transform.numpy_to_bytes(img_data, file_type)
|
|
logger.info(f"fileName: {file_name}, method: ImgSharpness costs {time.time() - start:6f} s")
|
|
return sample
|