Files
DataMate/deployment/helm/milvus/charts/tei
Jerry Yan 283f4af094 chore(gateway): 移除Dockerfile中的离线模式参数
- 移除了mvn命令中的-o参数,允许在线下载依赖包
- 优化了编译过程以支持网络连接场景下的依赖管理
2026-01-30 14:13:16 +08:00
..
2025-11-04 20:30:40 +08:00
2025-11-04 20:30:40 +08:00
2025-11-04 20:30:40 +08:00
2025-11-04 20:30:40 +08:00
2025-11-04 20:30:40 +08:00

Text Embeddings Inference (TEI) Integration Guide

This document describes how to use Text Embeddings Inference (TEI) service with Milvus Helm Chart, and how to integrate TEI with Milvus. TEI is an open-source project developed by Hugging Face, available at https://github.com/huggingface/text-embeddings-inference.

Overview

Text Embeddings Inference (TEI) is a high-performance text embedding model inference service that converts text into vector representations. Milvus is a vector database that can store and retrieve these vectors. By combining the two, you can build powerful semantic search and retrieval systems.

Deployment Methods

This guide provides two ways to use TEI:

  1. Deploy TEI service directly through the Milvus Helm Chart
  2. Use external TEI service with Milvus integration

Deploy TEI through Milvus Helm Chart

Basic Configuration

modelId: "BAAI/bge-large-en-v1.5"  # Specify the model to use

This is the simplest configuration, just specify enabled: true and the desired modelId.

Complete Configuration Options

modelId: "BAAI/bge-large-en-v1.5"    # Model ID
extraArgs: []                        # Additional command line arguments for TEI, such as "--max-batch-tokens=16384", "--max-client-batch-size=32", "--max-concurrent-requests=128", etc.
replicaCount: 1                      # Number of TEI replicas
image:
  repository: ghcr.io/huggingface/text-embeddings-inference  # Image repository
  tag: cpu-1.6                       # Image tag (CPU version)
  pullPolicy: IfNotPresent           # Image pull policy
service:
  type: ClusterIP                    # Service type
  port: 8080                         # Service port
  annotations: {}                    # Service annotations
  labels: {}                         # Service labels
resources:                           # Resource configuration
  requests:
    cpu: "4"                         # CPU request
    memory: "8Gi"                    # Memory request
  limits:
    cpu: "8"                         # CPU limit
    memory: "16Gi"                   # Memory limit
persistence:                         # Persistence storage configuration
  enabled: true                      # Enable persistence storage
  mountPath: "/data"                 # Mount path
  annotations: {}                    # Storage annotations
  persistentVolumeClaim:             # PVC configuration
    existingClaim: ""                # Use existing PVC
    storageClass:                    # Storage class
    accessModes: ReadWriteOnce       # Access modes
    size: 50Gi                       # Storage size
    subPath: ""                      # Sub path
nodeSelector: {}                     # Node selector
affinity: {}                         # Affinity configuration
tolerations: []                      # Tolerations
topologySpreadConstraints: []        # Topology spread constraints
extraEnv: []                         # Additional environment variables

Using GPU Acceleration

If you have GPU resources, you can use the GPU version of the TEI image to accelerate inference:

enabled: true
modelId: "BAAI/bge-large-en-v1.5"
image:
  repository: ghcr.io/huggingface/text-embeddings-inference
  tag: 1.6  # GPU version
resources:
  limits:
    nvidia.com/gpu: 1  # Allocate 1 GPU

Frequently Asked Questions

How to determine the embedding dimension of a model?

Different models have different embedding dimensions. Here are the dimensions of some commonly used models:

  • BAAI/bge-large-en-v1.5: 1024
  • BAAI/bge-base-en-v1.5: 768
  • nomic-ai/nomic-embed-text-v1: 768
  • sentence-transformers/all-mpnet-base-v2: 768

You can find this information in the model's documentation or get it through the TEI service's API.

How to test if the TEI service is working properly?

After deploying the TEI service, you can use the following commands to test if the service is working properly:

# Get the TEI service endpoint
export TEI_SERVICE=$(kubectl get svc -l component=text-embeddings-inference -o jsonpath='{.items[0].metadata.name}')

# Test the embedding functionality
kubectl run -it --rm curl --image=curlimages/curl -- curl -X POST "http://${TEI_SERVICE}:8080/embed" \
  -H "Content-Type: application/json" \
  -d '{"inputs":"This is a test text"}'

How to use TEI-generated embeddings in Milvus?

In Milvus, you can use TEI-generated embeddings for the following operations:

  1. When creating a collection, specify the vector dimension to match the TEI model output dimension
  2. Before inserting data, use the TEI service to convert text to vectors
  3. When searching, similarly use the TEI service to convert query text to vectors

Using Milvus Text Embedding Function

Milvus provides a text embedding function feature that allows you to generate vector embeddings directly within Milvus. You can configure Milvus to use TEI as the backend for this function.

Using the Text Embedding Function in Milvus

  1. Specify the embedding function when creating a collection:
from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType

# Connect to Milvus
connections.connect(host="localhost", port="19530")

# Define collection schema
fields = [
    FieldSchema(name="id", dtype=DataType.INT64, is_primary=True),
    FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=1000),
    FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=768)  # Dimension should match model output
]
schema = CollectionSchema(fields=fields, description="Text collection with embedding function")

# Create collection and specify embedding function
collection = Collection(
    name="text_collection",
    schema=schema,
    embedding_field="text",  # Specify the field to embed
    vector_field="vector",   # Specify the field to store embedding vectors
    embedding_config={
        "provider": "tei",
        "model_id": "BAAI/bge-large-en-v1.5",
        "endpoint": "http://tei-service:8080"
    }
)
  1. Automatically generate embeddings when inserting data:
# Insert data, Milvus will automatically call the TEI service to generate embedding vectors
collection.insert([
    {"id": 1, "text": "This is a sample document about artificial intelligence."},
    {"id": 2, "text": "Vector databases are designed to handle embeddings efficiently."}
])
  1. Automatically generate query embeddings when searching:
# Search directly using text, Milvus will automatically call the TEI service to generate query vectors
results = collection.search(
    query_texts=["Tell me about AI technology"],
    embedding_field="text",
    limit=3
)