Files
DataMate/runtime/datamate-python/app/module/annotation/schema/config.py
Jason Wang 45743f39f5 feat: add labeling template. refactor: switch to Poetry, build and deploy of backend Python (#79)
* feat: Enhance annotation module with template management and validation

- Added DatasetMappingCreateRequest and DatasetMappingUpdateRequest schemas to handle dataset mapping requests with camelCase and snake_case support.
- Introduced Annotation Template schemas including CreateAnnotationTemplateRequest, UpdateAnnotationTemplateRequest, and AnnotationTemplateResponse for managing annotation templates.
- Implemented AnnotationTemplateService for creating, updating, retrieving, and deleting annotation templates, including validation of configurations and XML generation.
- Added utility class LabelStudioConfigValidator for validating Label Studio configurations and XML formats.
- Updated database schema for annotation templates and labeling projects to include new fields and constraints.
- Seeded initial annotation templates for various use cases including image classification, object detection, and text classification.

* feat: Enhance TemplateForm with improved validation and dynamic field rendering; update LabelStudio config validation for camelCase support

* feat: Update docker-compose.yml to mark datamate dataset volume and network as external

* feat: Add tag configuration management and related components

- Introduced new components for tag selection and browsing in the frontend.
- Added API endpoint to fetch tag configuration from the backend.
- Implemented tag configuration management in the backend, including loading from YAML.
- Enhanced template service to support dynamic tag rendering based on configuration.
- Updated validation utilities to incorporate tag configuration checks.
- Refactored existing code to utilize the new tag configuration structure.

* feat: Refactor LabelStudioTagConfig for improved configuration loading and validation

* feat: Update Makefile to include backend-python-docker-build in the build process

* feat: Migrate to poetry for better deps management

* Add pyyaml dependency and update Dockerfile to use Poetry for dependency management

- Added pyyaml (>=6.0.3,<7.0.0) to pyproject.toml dependencies.
- Updated Dockerfile to install Poetry and manage dependencies using it.
- Improved layer caching by copying only dependency files before the application code.
- Removed unnecessary installation of build dependencies to keep the final image size small.

* feat: Remove duplicated backend-python-docker-build target from Makefile

* fix: airflow is not ready for adding yet

* feat: update Python version to 3.12 and remove project installation step in Dockerfile
2025-11-13 15:32:30 +08:00

36 lines
1.8 KiB
Python

from typing import Dict, Any, List, Optional
from pydantic import BaseModel, Field, ConfigDict
from app.module.shared.schema import BaseResponseModel
from app.module.shared.schema import StandardResponse
class ConfigResponse(BaseResponseModel):
"""配置信息响应模型"""
label_studio_url: str = Field(..., description="Label Studio基础URL")
class _TagAttributeConfig(BaseModel):
"""标签属性配置"""
type: Optional[str] = Field(None, description="属性类型: boolean/string/number")
values: Optional[List[str]] = Field(None, description="允许的枚举值列表")
default: Optional[Any] = Field(None, description="默认值")
description: Optional[str] = Field(None, description="属性描述")
model_config = ConfigDict(populate_by_name=True)
class _TagDefinition(BaseModel):
"""标签定义"""
description: str = Field(..., description="标签描述")
required_attrs: List[str] = Field(default_factory=list, alias="requiredAttrs", description="必需属性列表")
optional_attrs: Dict[str, _TagAttributeConfig] = Field(default_factory=dict, alias="optionalAttrs", description="可选属性配置")
requires_children: bool = Field(default=False, alias="requiresChildren", description="是否需要子元素")
child_tag: Optional[str] = Field(None, alias="childTag", description="子元素标签名")
child_required_attrs: Optional[List[str]] = Field(None, alias="childRequiredAttrs", description="子元素必需属性")
category: Optional[str] = Field(None, description="标签分类")
class TagConfigResponse(BaseResponseModel):
"""标签配置响应"""
objects: Dict[str, _TagDefinition] = Field(default_factory=dict, description="对象标签配置")
controls: Dict[str, _TagDefinition] = Field(default_factory=dict, description="控件标签配置")