Merge branch 'refs/heads/facebody_async'
Some checks are pending
ZhenTu-BE/pipeline/head Build queued...

This commit is contained in:
2025-12-01 10:39:11 +08:00
8 changed files with 569 additions and 140 deletions

View File

@@ -0,0 +1,50 @@
package com.ycwl.basic.controller.monitor;
import com.ycwl.basic.integration.kafka.scheduler.AccountFaceSchedulerManager;
import com.ycwl.basic.utils.ApiResponse;
import lombok.RequiredArgsConstructor;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.Map;
/**
* 人脸识别监控接口
* 提供调度器状态查询功能
*/
@RestController
@RequestMapping("/api/monitor/face-recognition")
@RequiredArgsConstructor
public class FaceRecognitionMonitorController {
private final AccountFaceSchedulerManager schedulerManager;
/**
* 获取所有账号的调度器统计信息
* <p>
* 示例返回:
* {
* "LTAI5xxx": {
* "accountKey": "LTAI5xxx",
* "cloudType": "ALI",
* "activeThreads": 3,
* "executorQueueSize": 12,
* "schedulerQueueSize": 45
* },
* "245xxx": {
* "accountKey": "245xxx",
* "cloudType": "BAIDU",
* "activeThreads": 8,
* "executorQueueSize": 5,
* "schedulerQueueSize": 20
* }
* }
*
* @return 所有账号的调度器状态
*/
@GetMapping("/schedulers")
public ApiResponse<Map<String, AccountFaceSchedulerManager.AccountSchedulerStats>> getAllSchedulerStats() {
return ApiResponse.success(schedulerManager.getAllStats());
}
}

View File

@@ -45,6 +45,7 @@ public class AliFaceBodyAdapter implements IFaceBodyAdapter {
private static final Map<String, IRateLimiter> deleteDbLimiters = new ConcurrentHashMap<>();
private static final Map<String, IRateLimiter> deleteEntityLimiters = new ConcurrentHashMap<>();
@Getter // 添加getter,支持获取accessKeyId
private AliFaceBodyConfig config;
public boolean setConfig(AliFaceBodyConfig config) {
@@ -184,10 +185,8 @@ public class AliFaceBodyAdapter implements IFaceBodyAdapter {
addFaceRequest.setImageUrl(faceUrl);
addFaceRequest.setExtraData(extData);
AddFaceResp respVo = new AddFaceResp();
try {
addFaceLimiter.acquire();
} catch (InterruptedException ignored) {
}
// QPS控制已由外层调度器管理,这里不再需要限流
// 移除阻塞等待: addFaceLimiter.acquire()
try {
AddFaceResponse acsResponse = client.getAcsResponse(addFaceRequest);
respVo.setScore(acsResponse.getData().getQualitieScore());

View File

@@ -8,6 +8,7 @@ import com.ycwl.basic.facebody.entity.SearchFaceResp;
import com.ycwl.basic.facebody.entity.SearchFaceResultItem;
import com.ycwl.basic.utils.ratelimiter.FixedRateLimiter;
import com.ycwl.basic.utils.ratelimiter.IRateLimiter;
import lombok.Getter;
import lombok.extern.slf4j.Slf4j;
import org.json.JSONArray;
import org.json.JSONObject;
@@ -40,6 +41,8 @@ public class BceFaceBodyAdapter implements IFaceBodyAdapter {
private static final Map<String, IRateLimiter> deleteDbLimiters = new ConcurrentHashMap<>();
private static final Map<String, IRateLimiter> deleteEntityLimiters = new ConcurrentHashMap<>();
private static final Map<String, IRateLimiter> deleteFaceLimiters = new ConcurrentHashMap<>();
@Getter // 添加getter,支持获取appId和addQps
private BceFaceBodyConfig config;
public boolean setConfig(BceFaceBodyConfig config) {
@@ -149,10 +152,8 @@ public class BceFaceBodyAdapter implements IFaceBodyAdapter {
options.put("user_info", extData);
// options.put("quality_control", "LOW");
options.put("action_type", "REPLACE");
try {
addEntityLimiter.acquire();
} catch (InterruptedException ignored) {
}
// QPS控制已由外层调度器管理,这里不再需要限流
// 移除阻塞等待: addEntityLimiter.acquire()
JSONObject response = client.addUser(faceUrl, "URL", dbName, entityId, options);
int errorCode = response.getInt("error_code");
if (errorCode == 0) {
@@ -164,10 +165,7 @@ public class BceFaceBodyAdapter implements IFaceBodyAdapter {
log.warn("无法正常访问URL图片,错误码: 222204,尝试下载图片转base64后重试,URL: {}", faceUrl);
String base64Image = downloadImageAsBase64(faceUrl);
if (base64Image != null) {
try {
addEntityLimiter.acquire();
} catch (InterruptedException ignored) {
}
// 重试时也不需要限流,由外层调度器控制
JSONObject retryResponse = client.addUser(base64Image, "BASE64", dbName, entityId, options);
if (retryResponse.getInt("error_code") == 0) {
log.info("使用base64重试添加人脸成功,entityId: {}", entityId);

View File

@@ -1,49 +0,0 @@
package com.ycwl.basic.integration.kafka.config;
import lombok.extern.slf4j.Slf4j;
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
/**
* 人脸识别异步处理线程池配置
*/
@Slf4j
@Configuration
@ConditionalOnProperty(name = "kafka.enabled", havingValue = "true")
public class FaceRecognitionThreadPoolConfig {
/**
* 创建人脸识别专用线程池
* - 核心线程数:128
* - 最大线程数:256
* - 队列容量:1000(避免无限制增长)
* - 拒绝策略:CallerRunsPolicy(调用者线程执行)
*/
@Bean(name = "faceRecognitionExecutor", destroyMethod = "shutdown")
public ThreadPoolExecutor faceRecognitionExecutor() {
ThreadPoolExecutor executor = new ThreadPoolExecutor(
128, // 核心线程数
256, // 最大线程数
10L, // 空闲线程存活时间
TimeUnit.SECONDS, // 时间单位
new LinkedBlockingQueue<>(1024), // 任务队列
r -> {
Thread thread = new Thread(r);
thread.setName("face-recognition-" + thread.getId());
thread.setDaemon(false);
return thread;
},
new ThreadPoolExecutor.CallerRunsPolicy() // 超过容量时由调用者线程执行
);
log.info("人脸识别线程池初始化完成 - 核心线程数: {}, 最大线程数: {}, 队列容量: 1000",
executor.getCorePoolSize(), executor.getMaximumPoolSize());
return executor;
}
}

View File

@@ -0,0 +1,180 @@
package com.ycwl.basic.integration.kafka.scheduler;
import com.google.common.util.concurrent.ThreadFactoryBuilder;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Component;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
/**
* 账号级别的人脸识别调度器管理
* 每个账号(accessKeyId/appId)拥有独立的:
* 1. 线程池 - 资源隔离
* 2. QPS调度器 - 精确控制每个账号的QPS
* 3. 任务队列 - 独立排队
* <p>
* 核心优势:
* - 多个阿里云账号互不影响,充分利用多账号QPS优势
* - 百度云和阿里云任务完全隔离
* - 每个账号严格按自己的QPS限制调度
*/
@Slf4j
@Component
public class AccountFaceSchedulerManager {
// 账号 -> 调度器上下文的映射
private final ConcurrentHashMap<String, AccountSchedulerContext> schedulers = new ConcurrentHashMap<>();
/**
* 获取或创建账号的调度器上下文
*
* @param accountKey 账号唯一标识 (accessKeyId 或 appId)
* @param cloudType 云类型 ("ALI" 或 "BAIDU")
* @param qps 该账号的QPS限制
* @return 调度器上下文
*/
public AccountSchedulerContext getOrCreateScheduler(
String accountKey,
String cloudType,
float qps
) {
return schedulers.computeIfAbsent(accountKey, key -> {
log.info("创建账号调度器: accountKey={}, cloudType={}, qps={}",
accountKey, cloudType, qps);
return createSchedulerContext(accountKey, cloudType, qps);
});
}
/**
* 创建调度器上下文
*/
private AccountSchedulerContext createSchedulerContext(
String accountKey,
String cloudType,
float qps
) {
// 根据云类型和QPS计算线程池参数
ThreadPoolConfig poolConfig = calculateThreadPoolConfig(cloudType, qps);
// 创建独立线程池
ThreadPoolExecutor executor = new ThreadPoolExecutor(
poolConfig.coreSize,
poolConfig.maxSize,
60L, TimeUnit.SECONDS,
new LinkedBlockingQueue<>(poolConfig.queueCapacity),
new ThreadFactoryBuilder()
.setNameFormat(cloudType.toLowerCase() + "-" + accountKey.substring(0, Math.min(8, accountKey.length())) + "-%d")
.build(),
new ThreadPoolExecutor.AbortPolicy() // 快速失败,避免阻塞
);
// 创建QPS调度器
QpsScheduler scheduler = new QpsScheduler(
Math.round(qps), // 每秒调度的任务数
poolConfig.maxConcurrent, // 最大并发数
executor
);
log.info("账号调度器创建成功: accountKey={}, threadPool=[core={}, max={}, queue={}], qps={}, maxConcurrent={}",
accountKey,
poolConfig.coreSize,
poolConfig.maxSize,
poolConfig.queueCapacity,
Math.round(qps),
poolConfig.maxConcurrent);
return new AccountSchedulerContext(accountKey, cloudType, executor, scheduler);
}
/**
* 根据云类型和QPS计算线程池参数
*/
private ThreadPoolConfig calculateThreadPoolConfig(String cloudType, float qps) {
// 假设每个任务平均执行时间 500ms
int avgExecutionTimeMs = 500;
// 所需线程数 = QPS × 平均执行时间(秒)
int requiredThreads = Math.max(1, (int) Math.ceil(qps * avgExecutionTimeMs / 1000.0));
// 核心线程数 = 所需线程数 × 2 (留有余量)
int coreSize = requiredThreads * 2;
// 最大线程数 = 核心线程数 × 2
int maxSize = coreSize * 2;
// 队列容量 = QPS × 60 (可容纳1分钟的任务)
int queueCapacity = Math.max(100, (int) (qps * 60));
// 最大并发数 = 所需线程数 × 1.5 (防止瞬时抖动)
int maxConcurrent = Math.max(2, (int) (requiredThreads * 1.5));
log.debug("计算线程池参数 - cloudType={}, qps={}, requiredThreads={}, coreSize={}, maxSize={}, queue={}, maxConcurrent={}",
cloudType, qps, requiredThreads, coreSize, maxSize, queueCapacity, maxConcurrent);
return new ThreadPoolConfig(coreSize, maxSize, queueCapacity, maxConcurrent);
}
/**
* 获取所有调度器的监控信息
*/
public Map<String, AccountSchedulerStats> getAllStats() {
Map<String, AccountSchedulerStats> stats = new HashMap<>();
schedulers.forEach((key, ctx) -> {
stats.put(key, new AccountSchedulerStats(
ctx.getAccountKey(),
ctx.getCloudType(),
ctx.getExecutor().getActiveCount(),
ctx.getExecutor().getQueue().size(),
ctx.getScheduler().getQueueSize()
));
});
return stats;
}
/**
* 关闭所有调度器 (应用关闭时调用)
*/
public void shutdownAll() {
log.info("关闭所有账号调度器, total={}", schedulers.size());
schedulers.forEach((key, ctx) -> {
try {
ctx.getScheduler().shutdown();
ctx.getExecutor().shutdown();
} catch (Exception e) {
log.error("关闭调度器失败, accountKey={}", key, e);
}
});
}
/**
* 线程池配置
*/
@Data
@AllArgsConstructor
static class ThreadPoolConfig {
int coreSize;
int maxSize;
int queueCapacity;
int maxConcurrent;
}
/**
* 账号调度器统计信息
*/
@Data
@AllArgsConstructor
public static class AccountSchedulerStats {
String accountKey;
String cloudType;
int activeThreads;
int executorQueueSize;
int schedulerQueueSize;
}
}

View File

@@ -0,0 +1,34 @@
package com.ycwl.basic.integration.kafka.scheduler;
import lombok.AllArgsConstructor;
import lombok.Data;
import java.util.concurrent.ThreadPoolExecutor;
/**
* 账号调度器上下文
* 封装每个账号的线程池和QPS调度器
*/
@Data
@AllArgsConstructor
public class AccountSchedulerContext {
/**
* 账号唯一标识 (accessKeyId 或 appId)
*/
private String accountKey;
/**
* 云类型 ("ALI" 或 "BAIDU")
*/
private String cloudType;
/**
* 该账号专属的线程池
*/
private ThreadPoolExecutor executor;
/**
* 该账号专属的QPS调度器
*/
private QpsScheduler scheduler;
}

View File

@@ -0,0 +1,114 @@
package com.ycwl.basic.integration.kafka.scheduler;
import lombok.extern.slf4j.Slf4j;
import java.util.concurrent.*;
/**
* QPS 调度器
* 定期从队列取任务,严格控制 QPS
* 每秒调度固定数量的任务,确保不超过云端 API 的 QPS 限制
*/
@Slf4j
public class QpsScheduler {
private final BlockingQueue<Runnable> taskQueue;
private final ThreadPoolExecutor workerPool;
private final ScheduledExecutorService scheduler;
private final int qps;
private final Semaphore concurrentLimiter; // 并发数限制,防止瞬时抖动
/**
* 创建 QPS 调度器
*
* @param qps 每秒允许的最大请求数
* @param maxConcurrent 最大并发数
* @param workerPool 工作线程池
*/
public QpsScheduler(int qps, int maxConcurrent, ThreadPoolExecutor workerPool) {
this.qps = qps;
this.taskQueue = new LinkedBlockingQueue<>();
this.workerPool = workerPool;
this.scheduler = new ScheduledThreadPoolExecutor(1, r -> {
Thread thread = new Thread(r);
thread.setName("qps-scheduler-" + workerPool.getThreadFactory().newThread(() -> {}).getName());
thread.setDaemon(true);
return thread;
});
this.concurrentLimiter = new Semaphore(maxConcurrent);
// 每秒调度一次,取 qps 个任务
scheduler.scheduleAtFixedRate(this::dispatch, 0, 1, TimeUnit.SECONDS);
log.info("QPS调度器已启动: qps={}, maxConcurrent={}", qps, maxConcurrent);
}
/**
* 调度任务
* 每秒执行一次,从队列中取出 qps 个任务提交到工作线程池
*/
private void dispatch() {
int dispatched = 0;
for (int i = 0; i < qps; i++) {
Runnable task = taskQueue.poll();
if (task == null) {
break; // 队列为空,结束本次调度
}
// 检查并发数限制
if (concurrentLimiter.tryAcquire()) {
try {
workerPool.execute(() -> {
try {
task.run();
} catch (Exception e) {
log.error("任务执行失败", e);
} finally {
concurrentLimiter.release();
}
});
dispatched++;
} catch (RejectedExecutionException e) {
// 线程池拒绝,释放并发许可,任务丢弃
concurrentLimiter.release();
log.warn("任务被线程池拒绝", e);
}
} else {
// 并发数已满,任务放回队列,等待下次调度
taskQueue.offer(task);
break;
}
}
if (dispatched > 0 || taskQueue.size() > 0) {
log.debug("QPS调度完成: dispatched={}, remainQueue={}, availableConcurrent={}",
dispatched, taskQueue.size(), concurrentLimiter.availablePermits());
}
}
/**
* 提交任务到调度队列
*
* @param task 待执行的任务
* @return 是否成功提交
*/
public boolean submit(Runnable task) {
return taskQueue.offer(task);
}
/**
* 获取队列中等待调度的任务数量
*
* @return 队列大小
*/
public int getQueueSize() {
return taskQueue.size();
}
/**
* 关闭调度器
*/
public void shutdown() {
scheduler.shutdown();
log.info("QPS调度器已关闭, qps={}", qps);
}
}

View File

@@ -1,17 +1,21 @@
package com.ycwl.basic.integration.kafka.service;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.ycwl.basic.facebody.adapter.AliFaceBodyAdapter;
import com.ycwl.basic.facebody.adapter.BceFaceBodyAdapter;
import com.ycwl.basic.facebody.adapter.IFaceBodyAdapter;
import com.ycwl.basic.facebody.entity.AddFaceResp;
import com.ycwl.basic.facebody.entity.AliFaceBodyConfig;
import com.ycwl.basic.facebody.entity.BceFaceBodyConfig;
import com.ycwl.basic.integration.common.manager.DeviceConfigManager;
import com.ycwl.basic.integration.kafka.dto.FaceProcessingMessage;
import com.ycwl.basic.integration.kafka.scheduler.AccountFaceSchedulerManager;
import com.ycwl.basic.integration.kafka.scheduler.AccountSchedulerContext;
import com.ycwl.basic.mapper.FaceSampleMapper;
import com.ycwl.basic.model.pc.faceSample.entity.FaceSampleEntity;
import com.ycwl.basic.repository.DeviceRepository;
import com.ycwl.basic.service.pc.ScenicService;
import com.ycwl.basic.service.task.TaskFaceService;
import com.ycwl.basic.task.DynamicTaskGenerator;
import com.ycwl.basic.integration.common.manager.DeviceConfigManager;
// 不再需要SnowFlakeUtil,使用外部传入的ID
import com.ycwl.basic.utils.JacksonUtil;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
@@ -20,13 +24,16 @@ import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
import org.springframework.stereotype.Service;
import java.time.ZoneId;
import java.util.Date;
import java.util.concurrent.ThreadPoolExecutor;
/**
* 人脸处理Kafka消费服务
* 消费外部系统发送到zt-face topic的消息
* <p>
* 核心改进:
* 1. 按账号(accessKeyId/appId)隔离线程池和QPS调度器
* 2. 确保数据库优先写入,状态流转清晰
* 3. 严格QPS控制,线程资源高效利用
*/
@Slf4j
@Service
@@ -40,51 +47,144 @@ public class FaceProcessingKafkaService {
private final TaskFaceService taskFaceService;
private final ScenicService scenicService;
private final DeviceRepository deviceRepository;
private final ThreadPoolExecutor faceRecognitionExecutor;
private final AccountFaceSchedulerManager schedulerManager;
/**
* 消费外部系统发送的人脸处理消息
* 先保存人脸样本数据,再进行异步人脸识别处理
* 核心流程:
* 1. 同步写入数据库 (最高优先级)
* 2. 获取账号调度器上下文
* 3. 提交到账号专属调度器队列
*/
@KafkaListener(topics = ZT_FACE_TOPIC, containerFactory = "manualCommitKafkaListenerContainerFactory")
public void processFaceMessage(String message, Acknowledgment ack) {
Long faceSampleId = null;
try {
FaceProcessingMessage faceMessage = JacksonUtil.parseObject(message, FaceProcessingMessage.class);
log.debug("接收到外部人脸处理消息, scenicId: {}, deviceId: {}, faceUrl: {}",
faceMessage.getScenicId(), faceMessage.getDeviceId(), faceMessage.getFaceUrl());
faceSampleId = faceMessage.getFaceSampleId();
// 使用外部传入的faceSampleId
Long externalFaceId = faceMessage.getFaceSampleId();
if (externalFaceId == null) {
log.error("外部消息中未包含faceSampleId");
// 即使消息格式错误,也消费消息避免重复处理
log.debug("接收人脸消息: scenicId={}, deviceId={}, faceSampleId={}",
faceMessage.getScenicId(), faceMessage.getDeviceId(), faceSampleId);
// ========== 第一步: 同步写入数据库 (最高优先级) ==========
boolean saved = saveFaceSample(faceMessage, faceSampleId);
if (!saved) {
log.error("❌ 数据库写入失败, 不提交识别任务, faceSampleId={}", faceSampleId);
// 数据库写入失败,消费消息避免重复
ack.acknowledge();
return;
}
// 先保存人脸样本数据
boolean saved = saveFaceSample(faceMessage, externalFaceId);
// 然后异步进行人脸识别处理(使用专用线程池)
if (saved) {
faceRecognitionExecutor.execute(() -> processFaceRecognitionAsync(faceMessage));
log.debug("人脸识别任务已提交至线程池, faceSampleId: {}, 活跃线程: {}, 队列大小: {}",
externalFaceId, faceRecognitionExecutor.getActiveCount(),
faceRecognitionExecutor.getQueue().size());
} else {
log.warn("人脸样本保存失败,但消息仍将被消费, faceSampleId: {}", externalFaceId);
log.debug("✅ 数据库写入成功, faceSampleId={}, status=0", faceSampleId);
// ========== 第二步: 获取账号调度器上下文 ==========
AccountSchedulerContext schedulerCtx = getSchedulerContextForScenic(faceMessage.getScenicId());
if (schedulerCtx == null) {
log.error("❌ 无法获取调度器上下文, faceSampleId={}", faceSampleId);
updateFaceSampleStatusSafely(faceSampleId, -1);
ack.acknowledge();
return;
}
// 无论处理是否成功,都消费消息
// ========== 第三步: 提交到账号专属调度器 ==========
boolean submitted = schedulerCtx.getScheduler().submit(() -> {
processFaceRecognitionAsync(faceMessage);
});
if (submitted) {
log.debug("✅ 任务已提交到调度器, account={}, cloudType={}, faceSampleId={}, schedulerQueue={}",
schedulerCtx.getAccountKey(),
schedulerCtx.getCloudType(),
faceSampleId,
schedulerCtx.getScheduler().getQueueSize());
} else {
log.error("❌ 调度器队列已满, account={}, faceSampleId={}",
schedulerCtx.getAccountKey(), faceSampleId);
updateFaceSampleStatusSafely(faceSampleId, -1);
}
// 无论成功失败,都消费消息
ack.acknowledge();
} catch (Exception e) {
log.error("处理外部人脸消息失败: {}", e.getMessage(), e);
// 即使发生异常也消费消息,避免消息堆积
log.error("❌ 处理人脸消息异常, faceSampleId={}", faceSampleId, e);
if (faceSampleId != null) {
updateFaceSampleStatusSafely(faceSampleId, -1);
}
ack.acknowledge();
}
}
/**
* 根据景区获取对应的账号调度器上下文
* 关键: 按 accessKeyId/appId 隔离,而非按云类型
*/
private AccountSchedulerContext getSchedulerContextForScenic(Long scenicId) {
try {
// 获取景区的 adapter
IFaceBodyAdapter adapter = scenicService.getScenicFaceBodyAdapter(scenicId);
if (adapter == null) {
log.error("景区 adapter 不存在, scenicId={}", scenicId);
return null;
}
// 提取账号信息和QPS配置
if (adapter instanceof AliFaceBodyAdapter aliAdapter) {
AliFaceBodyConfig config = aliAdapter.getConfig();
if (config == null || config.getAccessKeyId() == null) {
log.error("阿里云配置为空, scenicId={}", scenicId);
return null;
}
// 使用 accessKeyId 作为唯一标识
String accountKey = config.getAccessKeyId();
float qps = 2.0f; // 阿里云固定 2 QPS (AddFace操作)
return schedulerManager.getOrCreateScheduler(accountKey, "ALI", qps);
} else if (adapter instanceof BceFaceBodyAdapter baiduAdapter) {
BceFaceBodyConfig config = baiduAdapter.getConfig();
if (config == null || config.getAppId() == null) {
log.error("百度云配置为空, scenicId={}", scenicId);
return null;
}
// 使用 appId 作为唯一标识
String accountKey = config.getAppId();
float qps = config.getAddQps(); // 百度云可配置 QPS
return schedulerManager.getOrCreateScheduler(accountKey, "BAIDU", qps);
} else {
log.error("未知的 adapter 类型: {}", adapter.getClass().getName());
return null;
}
} catch (Exception e) {
log.error("获取调度器上下文失败, scenicId={}", scenicId, e);
return null;
}
}
/**
* 安全地更新人脸样本状态
* 捕获所有异常,确保状态更新失败不影响主流程
*/
private void updateFaceSampleStatusSafely(Long faceSampleId, Integer status) {
if (faceSampleId == null) {
return;
}
try {
faceSampleMapper.updateStatus(faceSampleId, status);
log.debug("状态更新成功: faceSampleId={}, status={}", faceSampleId, status);
} catch (Exception e) {
log.error("⚠️ 状态更新失败(非致命): faceSampleId={}, status={}", faceSampleId, status, e);
// 不抛出异常,避免影响消息消费
}
}
/**
* 保存人脸样本数据到数据库
* @param faceMessage 人脸处理消息
@@ -126,69 +226,59 @@ public class FaceProcessingKafkaService {
private void processFaceRecognitionAsync(FaceProcessingMessage message) {
Long faceSampleId = message.getFaceSampleId();
Long scenicId = message.getScenicId();
String faceUrl = message.getFaceUrl();
// 直接使用faceSampleId作为唯一标识
String faceUniqueId = faceSampleId.toString();
// 获取人脸识别适配器
IFaceBodyAdapter faceBodyAdapter = scenicService.getScenicFaceBodyAdapter(scenicId);
if (faceBodyAdapter == null) {
log.error("人脸识别适配器不存在, scenicId: {}", scenicId);
updateFaceSampleStatus(faceSampleId, -1);
return;
}
try {
// 更新状态为处理中
updateFaceSampleStatus(faceSampleId, 1);
// ========== 第一步: 更新状态为"处理中" ==========
updateFaceSampleStatusSafely(faceSampleId, 1);
log.debug("开始人脸识别, faceSampleId={}, status=1", faceSampleId);
// 确保人脸数据库存在
taskFaceService.assureFaceDb(faceBodyAdapter, scenicId.toString());
// ========== 第二步: 获取 adapter ==========
IFaceBodyAdapter adapter = scenicService.getScenicFaceBodyAdapter(scenicId);
if (adapter == null) {
log.error("adapter 不存在, scenicId={}, faceSampleId={}", scenicId, faceSampleId);
updateFaceSampleStatusSafely(faceSampleId, -1);
return;
}
// 添加人脸到识别服务(使用faceSampleId作为唯一标识)
AddFaceResp addFaceResp = faceBodyAdapter.addFace(
scenicId.toString(),
faceSampleId.toString(),
faceUrl,
faceUniqueId // 即faceSampleId.toString()
// ========== 第三步: 确保人脸数据库存在 ==========
taskFaceService.assureFaceDb(adapter, scenicId.toString());
// ========== 第四步: 调用 addFace (QPS已由调度器控制) ==========
String faceUniqueId = faceSampleId.toString();
AddFaceResp addFaceResp = adapter.addFace(
scenicId.toString(),
faceSampleId.toString(),
message.getFaceUrl(),
faceUniqueId
);
// ========== 第五步: 更新识别结果 ==========
if (addFaceResp != null) {
// 更新人脸样本得分和状态
// 成功: 更新 score 和状态
faceSampleMapper.updateScore(faceSampleId, addFaceResp.getScore());
updateFaceSampleStatus(faceSampleId, 2);
log.debug("人脸识别处理成功, faceSampleId: {}", faceSampleId);
updateFaceSampleStatusSafely(faceSampleId, 2);
// 查询设备配置,判断是否启用预订功能
log.info("✅ 人脸识别成功, faceSampleId={}, score={}, status=2",
faceSampleId, addFaceResp.getScore());
// 可选: 触发预订任务
Long deviceId = message.getDeviceId();
DeviceConfigManager deviceConfig = deviceRepository.getDeviceConfigManager(deviceId);
if (deviceConfig != null &&
Integer.valueOf(1).equals(deviceConfig.getInteger("enable_pre_book"))) {
Integer.valueOf(1).equals(deviceConfig.getInteger("enable_pre_book"))) {
DynamicTaskGenerator.addTask(faceSampleId);
}
} else {
log.warn("人脸添加返回空结果, faceSampleId: {}", faceSampleId);
updateFaceSampleStatus(faceSampleId, -1);
// addFace 返回 null,识别失败
log.warn("⚠️ addFace 返回 null, faceSampleId={}", faceSampleId);
updateFaceSampleStatusSafely(faceSampleId, -1);
}
} catch (Exception e) {
log.error("人脸识别处理失败, faceSampleId: {}, error: {}",
faceSampleId, e.getMessage(), e);
// 标记人脸样本为处理失败状态
updateFaceSampleStatus(faceSampleId, -1);
}
}
/**
* 更新人脸样本状态
*/
private void updateFaceSampleStatus(Long faceSampleId, Integer status) {
try {
faceSampleMapper.updateStatus(faceSampleId, status);
} catch (Exception e) {
log.error("更新人脸样本状态失败, faceSampleId: {}", faceSampleId, e);
// ========== 异常处理: 更新状态为失败 ==========
log.error("❌ 人脸识别异常, faceSampleId={}", faceSampleId, e);
updateFaceSampleStatusSafely(faceSampleId, -1);
}
}
@@ -226,14 +316,27 @@ public class FaceProcessingKafkaService {
.source("retry-manual")
.build();
// 提交到线程池进行异步处理
faceRecognitionExecutor.execute(() -> processFaceRecognitionAsync(message));
// 获取账号调度器上下文
AccountSchedulerContext schedulerCtx = getSchedulerContextForScenic(faceSample.getScenicId());
if (schedulerCtx == null) {
log.error("无法获取调度器上下文, faceSampleId={}", faceSampleId);
return false;
}
log.info("人脸识别重试任务已提交, faceSampleId: {}, 活跃线程: {}, 队列大小: {}",
faceSampleId, faceRecognitionExecutor.getActiveCount(),
faceRecognitionExecutor.getQueue().size());
// 提交到调度器进行异步处理
boolean submitted = schedulerCtx.getScheduler().submit(() -> processFaceRecognitionAsync(message));
return true;
if (submitted) {
log.info("人脸识别重试任务已提交, faceSampleId={}, account={}, cloudType={}, schedulerQueue={}",
faceSampleId,
schedulerCtx.getAccountKey(),
schedulerCtx.getCloudType(),
schedulerCtx.getScheduler().getQueueSize());
return true;
} else {
log.error("调度器队列已满,重试任务被拒绝, faceSampleId={}", faceSampleId);
return false;
}
} catch (Exception e) {
log.error("提交人脸识别重试任务失败, faceSampleId: {}", faceSampleId, e);