refactor(utils): 替换雪花ID生成工具实现

- 移除自定义的雪花ID生成逻辑
- 引入Hutool的Snowflake工具类
- 简化ID生成方法,提高代码可维护性
- 移除相关的测试类文件
- 删除不再使用的UniqueId和UniqueIdMetaData模型类
This commit is contained in:
2025-12-18 10:55:58 +08:00
parent 2432cf496f
commit 8dc0e993e1
4 changed files with 8 additions and 344 deletions

View File

@@ -1,50 +0,0 @@
package com.ycwl.basic.model.snowFlake;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import java.io.Serial;
import java.io.Serializable;
/**
* @author Created by liuhongguang on 2019年10月27日
* @Description
*/
@NoArgsConstructor
@AllArgsConstructor
@Data
public class UniqueId implements Serializable {
/**
* 0 + 41 + 5 + 5 + 12
* 固定 + 时间戳 + 工作机器ID + 数据中心ID + 序列号
*/
@Serial
private static final long serialVersionUID = 8632670752020316524L;
/**
* 工作机器ID、数据中心ID、序列号、上次生成ID的时间戳
*/
// 机器ID
private long machineId;
// 数据中心ID
private long datacenterId;
// 毫秒内序列
private long sequence;
// 时间戳
private long timestamp;
@Override
public String toString() {
return "UniqueIdRespVo{" +
"服务机器ID=" + machineId +
", 数据中心ID=" + datacenterId +
", 毫秒内的序列=" + sequence +
", 生成时间与预设时间戳间隔=" + timestamp +
'}';
}
}

View File

@@ -1,84 +0,0 @@
package com.ycwl.basic.model.snowFlake;
public class UniqueIdMetaData {
/**
* 取当前系统启动时间为参考起始时间,
* 取1995-04-01为参考日
*/
// public static final long START_TIME = LocalDateTime.now().toInstant(ZoneOffset.UTC).toEpochMilli();
public static final long START_TIME = 796665600000L;
/**
* 机器ID所占位数
*/
// 机器位数
public static final long MACHINE_ID_BITS = 5L;
/**
* 机器ID最大值31,0-31
*/
// 机器ID最大
public static final long MAX_MACHINE_ID = ~(-1L << MACHINE_ID_BITS);
/**
* 数据中心ID所占位数
*/
// 数据中心ID所占位数
public static final long DATACENTER_ID_BITS = 5L;
/**
* 数据中心ID最大值31,0-31
*/
// 数据中心ID最大值
public static final long MAX_DATACENTER_ID = ~(-1L << MACHINE_ID_BITS);
/**
* Sequence所占位数
*/
// 序列所占位数
public static final long SEQUENCE_BITS = 12L;
/**
* 机器ID偏移量12
*/
// 机器ID偏移量
public static final long MACHINE_SHIFT_BITS = SEQUENCE_BITS;
/**
* 数据中心ID偏移量12+5=17
*/
// 数据中心ID偏移量
public static final long DATACENTER_SHIFT_BITS = SEQUENCE_BITS + MACHINE_ID_BITS;
/**
* 时间戳的偏移量12+5+5=22
*/
// 时间戳偏移量
public static final long TIMESTAMP_LEFT_SHIFT_BITS = SEQUENCE_BITS + MACHINE_ID_BITS + DATACENTER_ID_BITS;
/**
* Sequence掩码4095
*/
// 序列掩码
public static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);
/**
* 机器ID掩码1023
*/
// 机器ID掩码
public static final long MACHINE_MASK = ~(-1L << MACHINE_ID_BITS);
/**
* 数据中心掩码1023
*/
// 数据中心掩码
public static final long DATACENTER_MASK = ~(-1L << MACHINE_ID_BITS);
/**
* 时间戳掩码2的41次方减1
*/
// 时间戳掩码
public static final long TIMESTAMP_MASK = ~(-1L << 41L);
}

View File

@@ -1,138 +1,28 @@
package com.ycwl.basic.utils;
import com.ycwl.basic.model.snowFlake.UniqueId;
import com.ycwl.basic.model.snowFlake.UniqueIdMetaData;
import cn.hutool.core.lang.Snowflake;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Component;
import java.util.Date;
/**
* @author Created by liuhongguang
* @Description
*/
@Slf4j
@Component
public class SnowFlakeUtil {
/**
* 记录上一毫秒数
*/
private static long lastTimestamp = -1L;
private static final Long machineId = 1L;
/**
* 记录毫秒内的序列,0-4095
*/
private static long sequence = 0L;
private static final Long datacenterId =1L;
private static Long machineId = 1L;
private static final Snowflake snowflake = new Snowflake(null, machineId, datacenterId, true);
private static Long datacenterId =1L;
public static synchronized String getId() {
long timestamp = System.currentTimeMillis();
// 如果当前时间小于上一次ID生成的时间戳,说明系统时钟被修改过,回退在上一次ID生成时间之前应当抛出异常!!!
if (timestamp < lastTimestamp) {
throw new IllegalStateException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
public static String getId() {
return snowflake.nextIdStr();
}
//如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & UniqueIdMetaData.SEQUENCE_MASK;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = System.currentTimeMillis();
while (timestamp <= lastTimestamp) {
timestamp = System.currentTimeMillis();
}
return String.valueOf(timestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
}
// 上次生成ID的时间截
lastTimestamp = timestamp;
// 移位并通过或运算组成64位ID
return String.valueOf(((timestamp - UniqueIdMetaData.START_TIME) << UniqueIdMetaData.TIMESTAMP_LEFT_SHIFT_BITS)
| (datacenterId << UniqueIdMetaData.DATACENTER_SHIFT_BITS)
| (machineId<< UniqueIdMetaData.MACHINE_SHIFT_BITS)
| sequence);
}
public static Long getLongId(){
return Long.valueOf(getId());
return snowflake.nextId();
}
public UniqueId explainId(long id) {
UniqueId uniqueId = com.ycwl.basic.utils.SnowFlakeUtil.convert(id);
if (uniqueId == null) {
log.error("==> 解析ID失败, ID不合法");
return null;
}
return uniqueId;
}
public Date transTime(long time) {
return new Date(time + UniqueIdMetaData.START_TIME);
}
/**
* 唯一ID对象解析返回ID
*
* @param uniqueId
* @return
*/
public static long convert(UniqueId uniqueId) {
long result = 0;
try {
result |= uniqueId.getSequence();
result |= uniqueId.getMachineId() << UniqueIdMetaData.MACHINE_SHIFT_BITS;
result |= uniqueId.getDatacenterId() << UniqueIdMetaData.DATACENTER_SHIFT_BITS;
result |= uniqueId.getTimestamp() << UniqueIdMetaData.TIMESTAMP_LEFT_SHIFT_BITS;
} catch (Exception e) {
e.printStackTrace();
return result;
}
return result;
}
public static UniqueId convert(long id) {
UniqueId uniqueId = null;
try {
uniqueId = new UniqueId();
uniqueId.setSequence(id & UniqueIdMetaData.SEQUENCE_MASK);
uniqueId.setMachineId((id >>> UniqueIdMetaData.MACHINE_SHIFT_BITS) & UniqueIdMetaData.MACHINE_MASK);
uniqueId.setDatacenterId((id >>> UniqueIdMetaData.DATACENTER_SHIFT_BITS) & UniqueIdMetaData.DATACENTER_MASK);
uniqueId.setTimestamp((id >>> UniqueIdMetaData.TIMESTAMP_LEFT_SHIFT_BITS) & UniqueIdMetaData.TIMESTAMP_MASK);
} catch (Exception e) {
e.printStackTrace();
return uniqueId;
}
return uniqueId;
}
}

View File

@@ -1,92 +0,0 @@
package com.ycwl.basic.utils;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Collections;
import java.util.HashSet;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
* Test for SnowFlakeUtil to verify uniqueness under high concurrency.
*/
public class SnowFlakeUtilTest {
private static final Logger log = LoggerFactory.getLogger(SnowFlakeUtilTest.class);
@Test
public void testIdUniqueness() throws InterruptedException {
// Number of threads
int threadCount = 1000;
// Number of IDs per thread
int idCountPerThread = 10000;
// Total IDs expected
int totalIdCount = threadCount * idCountPerThread;
ExecutorService executorService = Executors.newFixedThreadPool(threadCount);
final Set<String> idSet = ConcurrentHashMap.newKeySet();
final CountDownLatch latch = new CountDownLatch(threadCount);
// Use a set to capture any "suspicious" short IDs (potential raw timestamps)
final Set<String> suspiciousIds = ConcurrentHashMap.newKeySet();
log.info("Starting concurrent snowflake ID generation test...");
long start = System.currentTimeMillis();
for (int i = 0; i < threadCount; i++) {
executorService.execute(() -> {
try {
for (int j = 0; j < idCountPerThread; j++) {
String id = SnowFlakeUtil.getId();
idSet.add(id);
// Check for the potential overflow bug where it returns raw timestamp
// A valid snowflake ID (around year 2025) should be much larger than a timestamp
// Current timestamp is approx 13 digits (1734...)
// Snowflake ID should be approx 18-19 digits
if (id.length() < 15) {
suspiciousIds.add(id);
}
}
} catch (Exception e) {
log.error("Error generating ID", e);
} finally {
latch.countDown();
}
});
}
latch.await();
long end = System.currentTimeMillis();
executorService.shutdown();
log.info("Generated {} IDs in {} ms", totalIdCount, (end - start));
if (!suspiciousIds.isEmpty()) {
log.warn("Found {} suspicious IDs (likely raw timestamps due to sequence overflow): {}", suspiciousIds.size(), suspiciousIds);
// We might not fail the test for this if the user only asked for uniqueness,
// but it's good to report.
// However, if they are raw timestamps, they collide heavily if generated in the same ms.
}
Assertions.assertEquals(totalIdCount, idSet.size(), "Duplicate IDs found!");
log.info("Uniqueness test passed. Total unique IDs: {}", idSet.size());
}
@Test
public void testPerformanceSingleThread() {
long start = System.currentTimeMillis();
int count = 100000;
for (int i = 0; i < count; i++) {
SnowFlakeUtil.getId();
}
long end = System.currentTimeMillis();
log.info("Generated {} IDs in {} ms (Single Thread)", count, (end - start));
}
}