You've already forked qlg.tsgz.moe
							
							
		
			
				
	
	
		
			433 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			PHP
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			433 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			PHP
		
	
	
		
			Executable File
		
	
	
	
	
<?php
 | 
						|
/**
 | 
						|
 * PHPExcel
 | 
						|
 *
 | 
						|
 * Copyright (c) 2006 - 2014 PHPExcel
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 * @category   PHPExcel
 | 
						|
 * @package    PHPExcel_Shared_Trend
 | 
						|
 * @copyright  Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
 | 
						|
 * @license    http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt	LGPL
 | 
						|
 * @version    1.8.0, 2014-03-02
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * PHPExcel_Best_Fit
 | 
						|
 *
 | 
						|
 * @category   PHPExcel
 | 
						|
 * @package    PHPExcel_Shared_Trend
 | 
						|
 * @copyright  Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
 | 
						|
 */
 | 
						|
class PHPExcel_Best_Fit
 | 
						|
{
 | 
						|
	/**
 | 
						|
	 * Indicator flag for a calculation error
 | 
						|
	 *
 | 
						|
	 * @var	boolean
 | 
						|
	 **/
 | 
						|
	protected $_error				= False;
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Algorithm type to use for best-fit
 | 
						|
	 *
 | 
						|
	 * @var	string
 | 
						|
	 **/
 | 
						|
	protected $_bestFitType			= 'undetermined';
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Number of entries in the sets of x- and y-value arrays
 | 
						|
	 *
 | 
						|
	 * @var	int
 | 
						|
	 **/
 | 
						|
	protected $_valueCount			= 0;
 | 
						|
 | 
						|
	/**
 | 
						|
	 * X-value dataseries of values
 | 
						|
	 *
 | 
						|
	 * @var	float[]
 | 
						|
	 **/
 | 
						|
	protected $_xValues				= array();
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Y-value dataseries of values
 | 
						|
	 *
 | 
						|
	 * @var	float[]
 | 
						|
	 **/
 | 
						|
	protected $_yValues				= array();
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Flag indicating whether values should be adjusted to Y=0
 | 
						|
	 *
 | 
						|
	 * @var	boolean
 | 
						|
	 **/
 | 
						|
	protected $_adjustToZero		= False;
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Y-value series of best-fit values
 | 
						|
	 *
 | 
						|
	 * @var	float[]
 | 
						|
	 **/
 | 
						|
	protected $_yBestFitValues		= array();
 | 
						|
 | 
						|
	protected $_goodnessOfFit 		= 1;
 | 
						|
 | 
						|
	protected $_stdevOfResiduals	= 0;
 | 
						|
 | 
						|
	protected $_covariance			= 0;
 | 
						|
 | 
						|
	protected $_correlation			= 0;
 | 
						|
 | 
						|
	protected $_SSRegression		= 0;
 | 
						|
 | 
						|
	protected $_SSResiduals			= 0;
 | 
						|
 | 
						|
	protected $_DFResiduals			= 0;
 | 
						|
 | 
						|
	protected $_F					= 0;
 | 
						|
 | 
						|
	protected $_slope				= 0;
 | 
						|
 | 
						|
	protected $_slopeSE				= 0;
 | 
						|
 | 
						|
	protected $_intersect			= 0;
 | 
						|
 | 
						|
	protected $_intersectSE			= 0;
 | 
						|
 | 
						|
	protected $_Xoffset				= 0;
 | 
						|
 | 
						|
	protected $_Yoffset				= 0;
 | 
						|
 | 
						|
 | 
						|
	public function getError() {
 | 
						|
		return $this->_error;
 | 
						|
	}	//	function getBestFitType()
 | 
						|
 | 
						|
 | 
						|
	public function getBestFitType() {
 | 
						|
		return $this->_bestFitType;
 | 
						|
	}	//	function getBestFitType()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Return the Y-Value for a specified value of X
 | 
						|
	 *
 | 
						|
	 * @param	 float		$xValue			X-Value
 | 
						|
	 * @return	 float						Y-Value
 | 
						|
	 */
 | 
						|
	public function getValueOfYForX($xValue) {
 | 
						|
		return False;
 | 
						|
	}	//	function getValueOfYForX()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Return the X-Value for a specified value of Y
 | 
						|
	 *
 | 
						|
	 * @param	 float		$yValue			Y-Value
 | 
						|
	 * @return	 float						X-Value
 | 
						|
	 */
 | 
						|
	public function getValueOfXForY($yValue) {
 | 
						|
		return False;
 | 
						|
	}	//	function getValueOfXForY()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Return the original set of X-Values
 | 
						|
	 *
 | 
						|
	 * @return	 float[]				X-Values
 | 
						|
	 */
 | 
						|
	public function getXValues() {
 | 
						|
		return $this->_xValues;
 | 
						|
	}	//	function getValueOfXForY()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Return the Equation of the best-fit line
 | 
						|
	 *
 | 
						|
	 * @param	 int		$dp		Number of places of decimal precision to display
 | 
						|
	 * @return	 string
 | 
						|
	 */
 | 
						|
	public function getEquation($dp=0) {
 | 
						|
		return False;
 | 
						|
	}	//	function getEquation()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Return the Slope of the line
 | 
						|
	 *
 | 
						|
	 * @param	 int		$dp		Number of places of decimal precision to display
 | 
						|
	 * @return	 string
 | 
						|
	 */
 | 
						|
	public function getSlope($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_slope,$dp);
 | 
						|
		}
 | 
						|
		return $this->_slope;
 | 
						|
	}	//	function getSlope()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Return the standard error of the Slope
 | 
						|
	 *
 | 
						|
	 * @param	 int		$dp		Number of places of decimal precision to display
 | 
						|
	 * @return	 string
 | 
						|
	 */
 | 
						|
	public function getSlopeSE($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_slopeSE,$dp);
 | 
						|
		}
 | 
						|
		return $this->_slopeSE;
 | 
						|
	}	//	function getSlopeSE()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Return the Value of X where it intersects Y = 0
 | 
						|
	 *
 | 
						|
	 * @param	 int		$dp		Number of places of decimal precision to display
 | 
						|
	 * @return	 string
 | 
						|
	 */
 | 
						|
	public function getIntersect($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_intersect,$dp);
 | 
						|
		}
 | 
						|
		return $this->_intersect;
 | 
						|
	}	//	function getIntersect()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Return the standard error of the Intersect
 | 
						|
	 *
 | 
						|
	 * @param	 int		$dp		Number of places of decimal precision to display
 | 
						|
	 * @return	 string
 | 
						|
	 */
 | 
						|
	public function getIntersectSE($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_intersectSE,$dp);
 | 
						|
		}
 | 
						|
		return $this->_intersectSE;
 | 
						|
	}	//	function getIntersectSE()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Return the goodness of fit for this regression
 | 
						|
	 *
 | 
						|
	 * @param	 int		$dp		Number of places of decimal precision to return
 | 
						|
	 * @return	 float
 | 
						|
	 */
 | 
						|
	public function getGoodnessOfFit($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_goodnessOfFit,$dp);
 | 
						|
		}
 | 
						|
		return $this->_goodnessOfFit;
 | 
						|
	}	//	function getGoodnessOfFit()
 | 
						|
 | 
						|
 | 
						|
	public function getGoodnessOfFitPercent($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_goodnessOfFit * 100,$dp);
 | 
						|
		}
 | 
						|
		return $this->_goodnessOfFit * 100;
 | 
						|
	}	//	function getGoodnessOfFitPercent()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Return the standard deviation of the residuals for this regression
 | 
						|
	 *
 | 
						|
	 * @param	 int		$dp		Number of places of decimal precision to return
 | 
						|
	 * @return	 float
 | 
						|
	 */
 | 
						|
	public function getStdevOfResiduals($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_stdevOfResiduals,$dp);
 | 
						|
		}
 | 
						|
		return $this->_stdevOfResiduals;
 | 
						|
	}	//	function getStdevOfResiduals()
 | 
						|
 | 
						|
 | 
						|
	public function getSSRegression($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_SSRegression,$dp);
 | 
						|
		}
 | 
						|
		return $this->_SSRegression;
 | 
						|
	}	//	function getSSRegression()
 | 
						|
 | 
						|
 | 
						|
	public function getSSResiduals($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_SSResiduals,$dp);
 | 
						|
		}
 | 
						|
		return $this->_SSResiduals;
 | 
						|
	}	//	function getSSResiduals()
 | 
						|
 | 
						|
 | 
						|
	public function getDFResiduals($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_DFResiduals,$dp);
 | 
						|
		}
 | 
						|
		return $this->_DFResiduals;
 | 
						|
	}	//	function getDFResiduals()
 | 
						|
 | 
						|
 | 
						|
	public function getF($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_F,$dp);
 | 
						|
		}
 | 
						|
		return $this->_F;
 | 
						|
	}	//	function getF()
 | 
						|
 | 
						|
 | 
						|
	public function getCovariance($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_covariance,$dp);
 | 
						|
		}
 | 
						|
		return $this->_covariance;
 | 
						|
	}	//	function getCovariance()
 | 
						|
 | 
						|
 | 
						|
	public function getCorrelation($dp=0) {
 | 
						|
		if ($dp != 0) {
 | 
						|
			return round($this->_correlation,$dp);
 | 
						|
		}
 | 
						|
		return $this->_correlation;
 | 
						|
	}	//	function getCorrelation()
 | 
						|
 | 
						|
 | 
						|
	public function getYBestFitValues() {
 | 
						|
		return $this->_yBestFitValues;
 | 
						|
	}	//	function getYBestFitValues()
 | 
						|
 | 
						|
 | 
						|
	protected function _calculateGoodnessOfFit($sumX,$sumY,$sumX2,$sumY2,$sumXY,$meanX,$meanY, $const) {
 | 
						|
		$SSres = $SScov = $SScor = $SStot = $SSsex = 0.0;
 | 
						|
		foreach($this->_xValues as $xKey => $xValue) {
 | 
						|
			$bestFitY = $this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
 | 
						|
 | 
						|
			$SSres += ($this->_yValues[$xKey] - $bestFitY) * ($this->_yValues[$xKey] - $bestFitY);
 | 
						|
			if ($const) {
 | 
						|
				$SStot += ($this->_yValues[$xKey] - $meanY) * ($this->_yValues[$xKey] - $meanY);
 | 
						|
			} else {
 | 
						|
				$SStot += $this->_yValues[$xKey] * $this->_yValues[$xKey];
 | 
						|
			}
 | 
						|
			$SScov += ($this->_xValues[$xKey] - $meanX) * ($this->_yValues[$xKey] - $meanY);
 | 
						|
			if ($const) {
 | 
						|
				$SSsex += ($this->_xValues[$xKey] - $meanX) * ($this->_xValues[$xKey] - $meanX);
 | 
						|
			} else {
 | 
						|
				$SSsex += $this->_xValues[$xKey] * $this->_xValues[$xKey];
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		$this->_SSResiduals = $SSres;
 | 
						|
		$this->_DFResiduals = $this->_valueCount - 1 - $const;
 | 
						|
 | 
						|
		if ($this->_DFResiduals == 0.0) {
 | 
						|
			$this->_stdevOfResiduals = 0.0;
 | 
						|
		} else {
 | 
						|
			$this->_stdevOfResiduals = sqrt($SSres / $this->_DFResiduals);
 | 
						|
		}
 | 
						|
		if (($SStot == 0.0) || ($SSres == $SStot)) {
 | 
						|
			$this->_goodnessOfFit = 1;
 | 
						|
		} else {
 | 
						|
			$this->_goodnessOfFit = 1 - ($SSres / $SStot);
 | 
						|
		}
 | 
						|
 | 
						|
		$this->_SSRegression = $this->_goodnessOfFit * $SStot;
 | 
						|
		$this->_covariance = $SScov / $this->_valueCount;
 | 
						|
		$this->_correlation = ($this->_valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->_valueCount * $sumX2 - pow($sumX,2)) * ($this->_valueCount * $sumY2 - pow($sumY,2)));
 | 
						|
		$this->_slopeSE = $this->_stdevOfResiduals / sqrt($SSsex);
 | 
						|
		$this->_intersectSE = $this->_stdevOfResiduals * sqrt(1 / ($this->_valueCount - ($sumX * $sumX) / $sumX2));
 | 
						|
		if ($this->_SSResiduals != 0.0) {
 | 
						|
			if ($this->_DFResiduals == 0.0) {
 | 
						|
				$this->_F = 0.0;
 | 
						|
			} else {
 | 
						|
				$this->_F = $this->_SSRegression / ($this->_SSResiduals / $this->_DFResiduals);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			if ($this->_DFResiduals == 0.0) {
 | 
						|
				$this->_F = 0.0;
 | 
						|
			} else {
 | 
						|
				$this->_F = $this->_SSRegression / $this->_DFResiduals;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}	//	function _calculateGoodnessOfFit()
 | 
						|
 | 
						|
 | 
						|
	protected function _leastSquareFit($yValues, $xValues, $const) {
 | 
						|
		// calculate sums
 | 
						|
		$x_sum = array_sum($xValues);
 | 
						|
		$y_sum = array_sum($yValues);
 | 
						|
		$meanX = $x_sum / $this->_valueCount;
 | 
						|
		$meanY = $y_sum / $this->_valueCount;
 | 
						|
		$mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0;
 | 
						|
		for($i = 0; $i < $this->_valueCount; ++$i) {
 | 
						|
			$xy_sum += $xValues[$i] * $yValues[$i];
 | 
						|
			$xx_sum += $xValues[$i] * $xValues[$i];
 | 
						|
			$yy_sum += $yValues[$i] * $yValues[$i];
 | 
						|
 | 
						|
			if ($const) {
 | 
						|
				$mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY);
 | 
						|
				$mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX);
 | 
						|
			} else {
 | 
						|
				$mBase += $xValues[$i] * $yValues[$i];
 | 
						|
				$mDivisor += $xValues[$i] * $xValues[$i];
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		// calculate slope
 | 
						|
//		$this->_slope = (($this->_valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->_valueCount * $xx_sum) - ($x_sum * $x_sum));
 | 
						|
		$this->_slope = $mBase / $mDivisor;
 | 
						|
 | 
						|
		// calculate intersect
 | 
						|
//		$this->_intersect = ($y_sum - ($this->_slope * $x_sum)) / $this->_valueCount;
 | 
						|
		if ($const) {
 | 
						|
			$this->_intersect = $meanY - ($this->_slope * $meanX);
 | 
						|
		} else {
 | 
						|
			$this->_intersect = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		$this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum,$meanX,$meanY,$const);
 | 
						|
	}	//	function _leastSquareFit()
 | 
						|
 | 
						|
 | 
						|
	/**
 | 
						|
	 * Define the regression
 | 
						|
	 *
 | 
						|
	 * @param	float[]		$yValues	The set of Y-values for this regression
 | 
						|
	 * @param	float[]		$xValues	The set of X-values for this regression
 | 
						|
	 * @param	boolean		$const
 | 
						|
	 */
 | 
						|
	function __construct($yValues, $xValues=array(), $const=True) {
 | 
						|
		//	Calculate number of points
 | 
						|
		$nY = count($yValues);
 | 
						|
		$nX = count($xValues);
 | 
						|
 | 
						|
		//	Define X Values if necessary
 | 
						|
		if ($nX == 0) {
 | 
						|
			$xValues = range(1,$nY);
 | 
						|
			$nX = $nY;
 | 
						|
		} elseif ($nY != $nX) {
 | 
						|
			//	Ensure both arrays of points are the same size
 | 
						|
			$this->_error = True;
 | 
						|
			return False;
 | 
						|
		}
 | 
						|
 | 
						|
		$this->_valueCount = $nY;
 | 
						|
		$this->_xValues = $xValues;
 | 
						|
		$this->_yValues = $yValues;
 | 
						|
	}	//	function __construct()
 | 
						|
 | 
						|
}	//	class bestFit
 |