Jerry Yan 2229eb218d feat(annotation): 添加标注任务编辑功能
- 新增编辑模式支持,通过 editTask 属性控制
- 添加 getAnnotationTaskByIdUsingGet 和 updateAnnotationTaskByIdUsingPut API 接口
- 实现编辑模式下的任务详情加载和表单填充
- 编辑模式下禁用数据集修改和配置模式切换
- 更新模态框标题为动态显示(创建/编辑)
- 在任务列表操作菜单中添加编辑按钮
- 编辑模式下只允许修改标签取值,限制模板结构调整
- 添加任务详情加载状态显示
2026-01-19 20:25:56 +08:00
2026-01-04 09:42:25 +08:00
2025-11-04 20:30:40 +08:00
2025-12-11 23:17:01 +08:00
2025-12-11 23:17:01 +08:00

DataMate All-in-One Data Work Platform

Backend CI Frontend CI GitHub Stars GitHub Forks GitHub Issues GitHub License

DataMate is an enterprise-level data processing platform for model fine-tuning and RAG retrieval, supporting core functions such as data collection, data management, operator marketplace, data cleaning, data synthesis, data annotation, data evaluation, and knowledge generation.

简体中文 | English

If you like this project, please give it a Star️!

🌟 Core Features

  • Core Modules: Data Collection, Data Management, Operator Marketplace, Data Cleaning, Data Synthesis, Data Annotation, Data Evaluation, Knowledge Generation.
  • Visual Orchestration: Drag-and-drop data processing workflow design.
  • Operator Ecosystem: Rich built-in operators and support for custom operators.

🚀 Quick Start

Prerequisites

  • Git (for pulling source code)
  • Make (for building and installing)
  • Docker (for building images and deploying services)
  • Docker-Compose (for service deployment - Docker method)
  • Kubernetes (for service deployment - k8s method)
  • Helm (for service deployment - k8s method)

This project supports deployment via two methods: docker-compose and helm. After executing the command, please enter the corresponding number for the deployment method. The command echo is as follows:

Choose a deployment method:
1. Docker/Docker-Compose
2. Kubernetes/Helm
Enter choice:

Clone the Code

git clone git@github.com:ModelEngine-Group/DataMate.git
cd DataMate

Deploy the basic services

make install

If the machine you are using does not have make installed, please run the following command to deploy it:

# Windows
set REGISTRY=ghcr.io/modelengine-group/
docker compose -f ./deployment/docker/datamate/docker-compose.yml up -d
docker compose -f ./deployment/docker/milvus/docker-compose.yml up -d

# Linux/Mac
export REGISTRY=ghcr.io/modelengine-group/
docker compose -f ./deployment/docker/datamate/docker-compose.yml up -d
docker compose -f ./deployment/docker/milvus/docker-compose.yml up -d

Once the container is running, access http://localhost:30000 in a browser to view the front-end interface.

To list all available Make targets, flags and help text, run:

make help

Build and deploy Mineru Enhanced PDF Processing

make build-mineru
make install-mineru

Deploy the DeerFlow service

make install-deer-flow

Local Development and Deployment

After modifying the local code, please execute the following commands to build the image and deploy using the local image.

make build
make install dev=true

Uninstall

make uninstall

When running make uninstall, the installer will prompt once whether to delete volumes; that single choice is applied to all components. The uninstall order is: milvus -> label-studio -> datamate, which ensures the datamate network is removed cleanly after services that use it have stopped.

🤝 Contribution Guidelines

Thank you for your interest in this project! We warmly welcome contributions from the community. Whether it's submitting bug reports, suggesting new features, or directly participating in code development, all forms of help make the project better.

📮 GitHub Issues: Submit bugs or feature suggestions.

🔧 GitHub Pull Requests: Contribute code improvements.

📄 License

DataMate is open source under the MIT license. You are free to use, modify, and distribute the code of this project in compliance with the license terms.

Description
No description provided
Readme 9.9 MiB
Languages
JavaScript 50.1%
TypeScript 19.9%
Python 13.8%
Java 9.2%
Smarty 5.3%
Other 1.6%