Jerry Yan 699031dae7 fix: 修复编辑数据集时无法清除关联数据集的编译问题
问题分析:
之前尝试使用 @TableField(updateStrategy = FieldStrategy.IGNORED/ALWAYS) 注解
来强制更新 null 值,但 FieldStrategy.ALWAYS 可能不存在于当前
MyBatis-Plus 3.5.14 版本中,导致编译错误。

修复方案:
1. 移除 Dataset.java 中 parentDatasetId 字段的 @TableField(updateStrategy) 注解
2. 移除不需要的 import com.baomidou.mybatisplus.annotation.FieldStrategy
3. 在 DatasetApplicationService.updateDataset 方法中:
   - 添加 import com.baomidou.mybatisplus.core.conditions.update.LambdaUpdateWrapper
   - 保存原始的 parentDatasetId 值用于比较
   - handleParentChange 之后,检查 parentDatasetId 是否发生变化
   - 如果发生变化,使用 LambdaUpdateWrapper 显式地更新 parentDatasetId 字段
   - 这样即使值为 null 也能被正确更新到数据库

原理:
MyBatis-Plus 的 updateById 方法默认只更新非 null 字段。
通过使用 LambdaUpdateWrapper 的 set 方法,可以显式地设置字段值,
包括 null 值,从而确保字段能够被正确更新到数据库。
2026-02-03 11:09:15 +00:00
a
2026-02-02 16:09:25 +08:00
2025-11-04 20:30:40 +08:00
2025-12-11 23:17:01 +08:00
2025-12-11 23:17:01 +08:00

DataMate All-in-One Data Work Platform

Backend CI Frontend CI GitHub Stars GitHub Forks GitHub Issues GitHub License

DataMate is an enterprise-level data processing platform for model fine-tuning and RAG retrieval, supporting core functions such as data collection, data management, operator marketplace, data cleaning, data synthesis, data annotation, data evaluation, and knowledge generation.

简体中文 | English

If you like this project, please give it a Star️!

🌟 Core Features

  • Core Modules: Data Collection, Data Management, Operator Marketplace, Data Cleaning, Data Synthesis, Data Annotation, Data Evaluation, Knowledge Generation.
  • Visual Orchestration: Drag-and-drop data processing workflow design.
  • Operator Ecosystem: Rich built-in operators and support for custom operators.

🚀 Quick Start

Prerequisites

  • Git (for pulling source code)
  • Make (for building and installing)
  • Docker (for building images and deploying services)
  • Docker-Compose (for service deployment - Docker method)
  • Kubernetes (for service deployment - k8s method)
  • Helm (for service deployment - k8s method)

This project supports deployment via two methods: docker-compose and helm. After executing the command, please enter the corresponding number for the deployment method. The command echo is as follows:

Choose a deployment method:
1. Docker/Docker-Compose
2. Kubernetes/Helm
Enter choice:

Clone the Code

git clone git@github.com:ModelEngine-Group/DataMate.git
cd DataMate

Deploy the basic services

make install

If the machine you are using does not have make installed, please run the following command to deploy it:

# Windows
set REGISTRY=ghcr.io/modelengine-group/
docker compose -f ./deployment/docker/datamate/docker-compose.yml up -d
docker compose -f ./deployment/docker/milvus/docker-compose.yml up -d

# Linux/Mac
export REGISTRY=ghcr.io/modelengine-group/
docker compose -f ./deployment/docker/datamate/docker-compose.yml up -d
docker compose -f ./deployment/docker/milvus/docker-compose.yml up -d

Once the container is running, access http://localhost:30000 in a browser to view the front-end interface.

To list all available Make targets, flags and help text, run:

make help

Build and deploy Mineru Enhanced PDF Processing

make build-mineru
make install-mineru

Deploy the DeerFlow service

make install-deer-flow

Local Development and Deployment

After modifying the local code, please execute the following commands to build the image and deploy using the local image.

make build
make install dev=true

Uninstall

make uninstall

When running make uninstall, the installer will prompt once whether to delete volumes; that single choice is applied to all components. The uninstall order is: milvus -> label-studio -> datamate, which ensures the datamate network is removed cleanly after services that use it have stopped.

🤝 Contribution Guidelines

Thank you for your interest in this project! We warmly welcome contributions from the community. Whether it's submitting bug reports, suggesting new features, or directly participating in code development, all forms of help make the project better.

📮 GitHub Issues: Submit bugs or feature suggestions.

🔧 GitHub Pull Requests: Contribute code improvements.

📄 License

DataMate is open source under the MIT license. You are free to use, modify, and distribute the code of this project in compliance with the license terms.

Description
No description provided
Readme 9.8 MiB
Languages
JavaScript 50.1%
TypeScript 19.9%
Python 13.8%
Java 9.2%
Smarty 5.3%
Other 1.6%