Jerry Yan a00a6ed3c3 feat(knowledge-base): 实现知识库文件夹功能和优化文件管理
- 添加 datasetId 和 filePath 字段到 DatasetFile 接口
- 实现 resolveRelativeFileName 函数用于解析相对文件名
- 在 AddDataDialog 中使用 resolveRelativeFileName 处理文件名
- 添加文件夹浏览功能,支持目录导航和层级显示
- 实现文件夹删除功能,可批量删除目录下所有文件
- 集成 Folder 和 File 图标组件用于目录和文件区分
- 优化文件列表加载逻辑,使用分页和关键词搜索
- 添加文件夹状态显示和相应操作按钮
- 实现文件路径前缀管理和子目录过滤
- 重构文件列表渲染逻辑,支持目录和文件混合展示
2026-01-30 21:30:54 +08:00
2025-11-04 20:30:40 +08:00
2025-12-11 23:17:01 +08:00
2025-12-11 23:17:01 +08:00

DataMate All-in-One Data Work Platform

Backend CI Frontend CI GitHub Stars GitHub Forks GitHub Issues GitHub License

DataMate is an enterprise-level data processing platform for model fine-tuning and RAG retrieval, supporting core functions such as data collection, data management, operator marketplace, data cleaning, data synthesis, data annotation, data evaluation, and knowledge generation.

简体中文 | English

If you like this project, please give it a Star️!

🌟 Core Features

  • Core Modules: Data Collection, Data Management, Operator Marketplace, Data Cleaning, Data Synthesis, Data Annotation, Data Evaluation, Knowledge Generation.
  • Visual Orchestration: Drag-and-drop data processing workflow design.
  • Operator Ecosystem: Rich built-in operators and support for custom operators.

🚀 Quick Start

Prerequisites

  • Git (for pulling source code)
  • Make (for building and installing)
  • Docker (for building images and deploying services)
  • Docker-Compose (for service deployment - Docker method)
  • Kubernetes (for service deployment - k8s method)
  • Helm (for service deployment - k8s method)

This project supports deployment via two methods: docker-compose and helm. After executing the command, please enter the corresponding number for the deployment method. The command echo is as follows:

Choose a deployment method:
1. Docker/Docker-Compose
2. Kubernetes/Helm
Enter choice:

Clone the Code

git clone git@github.com:ModelEngine-Group/DataMate.git
cd DataMate

Deploy the basic services

make install

If the machine you are using does not have make installed, please run the following command to deploy it:

# Windows
set REGISTRY=ghcr.io/modelengine-group/
docker compose -f ./deployment/docker/datamate/docker-compose.yml up -d
docker compose -f ./deployment/docker/milvus/docker-compose.yml up -d

# Linux/Mac
export REGISTRY=ghcr.io/modelengine-group/
docker compose -f ./deployment/docker/datamate/docker-compose.yml up -d
docker compose -f ./deployment/docker/milvus/docker-compose.yml up -d

Once the container is running, access http://localhost:30000 in a browser to view the front-end interface.

To list all available Make targets, flags and help text, run:

make help

Build and deploy Mineru Enhanced PDF Processing

make build-mineru
make install-mineru

Deploy the DeerFlow service

make install-deer-flow

Local Development and Deployment

After modifying the local code, please execute the following commands to build the image and deploy using the local image.

make build
make install dev=true

Uninstall

make uninstall

When running make uninstall, the installer will prompt once whether to delete volumes; that single choice is applied to all components. The uninstall order is: milvus -> label-studio -> datamate, which ensures the datamate network is removed cleanly after services that use it have stopped.

🤝 Contribution Guidelines

Thank you for your interest in this project! We warmly welcome contributions from the community. Whether it's submitting bug reports, suggesting new features, or directly participating in code development, all forms of help make the project better.

📮 GitHub Issues: Submit bugs or feature suggestions.

🔧 GitHub Pull Requests: Contribute code improvements.

📄 License

DataMate is open source under the MIT license. You are free to use, modify, and distribute the code of this project in compliance with the license terms.

Description
No description provided
Readme 9.9 MiB
Languages
JavaScript 50.1%
TypeScript 19.9%
Python 13.8%
Java 9.2%
Smarty 5.3%
Other 1.6%