feat(gpu): 添加多显卡调度支持

- 新增 GPUDevice 数据类定义 GPU 设备信息
- 扩展 WorkerConfig 添加 gpu_devices 配置项
- 从环境变量 GPU_DEVICES 读取多显卡设备配置
- 实现 GPUScheduler 提供轮询调度功能
- 修改 FFmpeg 参数生成支持设备指定
- 添加线程本地存储管理当前 GPU 设备
- 更新任务执行器集成 GPU 设备分配
- 实现 GPU 设备自动检测和验证功能
- 添加相关日志记录和状态监控
This commit is contained in:
2026-01-19 18:34:03 +08:00
parent e5c5a181d3
commit 0cc96a968b
7 changed files with 392 additions and 11 deletions

View File

@@ -32,11 +32,17 @@ TEMP_DIR=tmp/
#UPLOAD_TIMEOUT=600 # 上传超时(秒)
# ===================
# 硬件加速
# 硬件加速与多显卡
# ===================
# 可选值: none, qsv, cuda
# 硬件加速类型: none, qsv, cuda
HW_ACCEL=none
# GPU 设备列表(逗号分隔的设备索引)
# 不配置时:自动检测所有设备
# 单设备示例:GPU_DEVICES=0
# 多设备示例:GPU_DEVICES=0,1,2
#GPU_DEVICES=0,1
# ===================
# 素材缓存
# ===================

View File

@@ -5,12 +5,15 @@ Worker 配置模型
定义 Worker 运行时的配置参数。
"""
import logging
import os
from dataclasses import dataclass, field
from typing import List, Optional
from constant import HW_ACCEL_NONE, HW_ACCEL_QSV, HW_ACCEL_CUDA, HW_ACCEL_TYPES
logger = logging.getLogger(__name__)
# 默认支持的任务类型
DEFAULT_CAPABILITIES = [
@@ -59,6 +62,9 @@ class WorkerConfig:
# 硬件加速配置
hw_accel: str = HW_ACCEL_NONE # 硬件加速类型: none, qsv, cuda
# GPU 设备配置(多显卡调度)
gpu_devices: List[int] = field(default_factory=list) # 空列表表示使用默认设备
# 素材缓存配置
cache_enabled: bool = True # 是否启用素材缓存
cache_dir: str = "" # 缓存目录,默认为 temp_dir/cache
@@ -113,6 +119,16 @@ class WorkerConfig:
if hw_accel not in HW_ACCEL_TYPES:
hw_accel = HW_ACCEL_NONE
# GPU 设备列表(用于多显卡调度)
gpu_devices_str = os.getenv('GPU_DEVICES', '')
gpu_devices: List[int] = []
if gpu_devices_str:
try:
gpu_devices = [int(d.strip()) for d in gpu_devices_str.split(',') if d.strip()]
except ValueError:
logger.warning(f"Invalid GPU_DEVICES value: {gpu_devices_str}, using auto-detect")
gpu_devices = []
# 素材缓存配置
cache_enabled = os.getenv('CACHE_ENABLED', 'true').lower() in ('true', '1', 'yes')
cache_dir = os.getenv('CACHE_DIR', '') # 空字符串表示使用默认路径
@@ -132,6 +148,7 @@ class WorkerConfig:
download_timeout=download_timeout,
upload_timeout=upload_timeout,
hw_accel=hw_accel,
gpu_devices=gpu_devices,
cache_enabled=cache_enabled,
cache_dir=cache_dir if cache_dir else os.path.join(temp_dir, 'cache'),
cache_max_size_gb=cache_max_size_gb
@@ -156,3 +173,11 @@ class WorkerConfig:
def is_cuda(self) -> bool:
"""是否使用 CUDA 硬件加速"""
return self.hw_accel == HW_ACCEL_CUDA
def has_multi_gpu(self) -> bool:
"""是否配置了多 GPU"""
return len(self.gpu_devices) > 1
def get_gpu_devices(self) -> List[int]:
"""获取 GPU 设备列表"""
return self.gpu_devices.copy()

31
domain/gpu.py Normal file
View File

@@ -0,0 +1,31 @@
# -*- coding: utf-8 -*-
"""
GPU 设备模型
定义 GPU 设备的数据结构。
"""
from dataclasses import dataclass
from typing import Optional
@dataclass
class GPUDevice:
"""
GPU 设备信息
Attributes:
index: 设备索引(对应 nvidia-smi 中的 GPU ID)
name: 设备名称(如 "NVIDIA GeForce RTX 3090"
memory_total: 显存总量(MB),可选
available: 设备是否可用
"""
index: int
name: str
memory_total: Optional[int] = None
available: bool = True
def __str__(self) -> str:
status = "available" if self.available else "unavailable"
mem_info = f", {self.memory_total}MB" if self.memory_total else ""
return f"GPU[{self.index}]: {self.name}{mem_info} ({status})"

View File

@@ -11,6 +11,7 @@ import logging
import shutil
import tempfile
import subprocess
import threading
from abc import ABC
from typing import Optional, List, Dict, Any, Tuple, TYPE_CHECKING
@@ -75,23 +76,33 @@ def get_video_encode_args(hw_accel: str = HW_ACCEL_NONE) -> List[str]:
]
def get_hwaccel_decode_args(hw_accel: str = HW_ACCEL_NONE) -> List[str]:
def get_hwaccel_decode_args(hw_accel: str = HW_ACCEL_NONE, device_index: Optional[int] = None) -> List[str]:
"""
获取硬件加速解码参数(输入文件之前使用)
Args:
hw_accel: 硬件加速类型 (none, qsv, cuda)
device_index: GPU 设备索引,用于多显卡调度
Returns:
FFmpeg 硬件加速解码参数列表
"""
if hw_accel == HW_ACCEL_CUDA:
# CUDA 硬件加速解码
# 注意:使用 cuda 作为 hwaccel,但输出到系统内存以便 CPU 滤镜处理
return ['-hwaccel', 'cuda', '-hwaccel_output_format', 'cuda']
args = ['-hwaccel', 'cuda']
# 多显卡模式下指定设备
if device_index is not None:
args.extend(['-hwaccel_device', str(device_index)])
args.extend(['-hwaccel_output_format', 'cuda'])
return args
elif hw_accel == HW_ACCEL_QSV:
# QSV 硬件加速解码
return ['-hwaccel', 'qsv', '-hwaccel_output_format', 'qsv']
args = ['-hwaccel', 'qsv']
# QSV 在 Windows 上使用 -qsv_device
if device_index is not None:
args.extend(['-qsv_device', str(device_index)])
args.extend(['-hwaccel_output_format', 'qsv'])
return args
else:
return []
@@ -248,9 +259,13 @@ class BaseHandler(TaskHandler, ABC):
- 临时目录管理
- 文件下载/上传
- FFmpeg 命令执行
- GPU 设备管理(多显卡调度)
- 日志记录
"""
# 线程本地存储:用于存储当前线程的 GPU 设备索引
_thread_local = threading.local()
def __init__(self, config: WorkerConfig, api_client: 'APIClientV2'):
"""
初始化处理器
@@ -267,6 +282,39 @@ class BaseHandler(TaskHandler, ABC):
max_size_gb=config.cache_max_size_gb
)
# ========== GPU 设备管理 ==========
def set_gpu_device(self, device_index: int) -> None:
"""
设置当前线程的 GPU 设备索引
由 TaskExecutor 在任务执行前调用。
Args:
device_index: GPU 设备索引
"""
self._thread_local.gpu_device = device_index
def get_gpu_device(self) -> Optional[int]:
"""
获取当前线程的 GPU 设备索引
Returns:
GPU 设备索引,未设置则返回 None
"""
return getattr(self._thread_local, 'gpu_device', None)
def clear_gpu_device(self) -> None:
"""
清除当前线程的 GPU 设备索引
由 TaskExecutor 在任务执行后调用。
"""
if hasattr(self._thread_local, 'gpu_device'):
del self._thread_local.gpu_device
# ========== FFmpeg 参数生成 ==========
def get_video_encode_args(self) -> List[str]:
"""
获取当前配置的视频编码参数
@@ -278,12 +326,13 @@ class BaseHandler(TaskHandler, ABC):
def get_hwaccel_decode_args(self) -> List[str]:
"""
获取硬件加速解码参数(在输入文件之前使用
获取硬件加速解码参数(支持设备指定
Returns:
FFmpeg 硬件加速解码参数列表
"""
return get_hwaccel_decode_args(self.config.hw_accel)
device_index = self.get_gpu_device()
return get_hwaccel_decode_args(self.config.hw_accel, device_index)
def get_hwaccel_filter_prefix(self) -> str:
"""

164
services/gpu_scheduler.py Normal file
View File

@@ -0,0 +1,164 @@
# -*- coding: utf-8 -*-
"""
GPU 调度器
提供多 GPU 设备的轮询调度功能。
"""
import logging
import threading
from typing import List, Optional
from domain.config import WorkerConfig
from domain.gpu import GPUDevice
from util.system import get_all_gpu_info, validate_gpu_device
from constant import HW_ACCEL_CUDA, HW_ACCEL_QSV
logger = logging.getLogger(__name__)
class GPUScheduler:
"""
GPU 调度器
实现多 GPU 设备的轮询(Round Robin)调度。
线程安全,支持并发任务执行。
使用方式:
scheduler = GPUScheduler(config)
# 在任务执行时
device_index = scheduler.acquire()
try:
# 执行任务
pass
finally:
scheduler.release(device_index)
"""
def __init__(self, config: WorkerConfig):
"""
初始化调度器
Args:
config: Worker 配置
"""
self._config = config
self._devices: List[GPUDevice] = []
self._next_index: int = 0
self._lock = threading.Lock()
self._enabled = False
# 初始化设备列表
self._init_devices()
def _init_devices(self) -> None:
"""初始化 GPU 设备列表"""
# 仅在启用硬件加速时才初始化
if self._config.hw_accel not in (HW_ACCEL_CUDA, HW_ACCEL_QSV):
logger.info("Hardware acceleration not enabled, GPU scheduler disabled")
return
configured_devices = self._config.gpu_devices
if configured_devices:
# 使用配置指定的设备
self._devices = self._validate_configured_devices(configured_devices)
else:
# 自动检测所有设备
self._devices = self._auto_detect_devices()
if self._devices:
self._enabled = True
device_info = ', '.join(str(d) for d in self._devices)
logger.info(f"GPU scheduler initialized with {len(self._devices)} device(s): {device_info}")
else:
logger.warning("No GPU devices available, scheduler disabled")
def _validate_configured_devices(self, indices: List[int]) -> List[GPUDevice]:
"""
验证配置的设备列表
Args:
indices: 配置的设备索引列表
Returns:
验证通过的设备列表
"""
devices = []
for index in indices:
if validate_gpu_device(index):
devices.append(GPUDevice(
index=index,
name=f"GPU-{index}",
available=True
))
else:
logger.warning(f"GPU device {index} is not available, skipping")
return devices
def _auto_detect_devices(self) -> List[GPUDevice]:
"""
自动检测所有可用 GPU
Returns:
检测到的设备列表
"""
all_devices = get_all_gpu_info()
# 过滤不可用设备
return [d for d in all_devices if d.available]
@property
def enabled(self) -> bool:
"""调度器是否启用"""
return self._enabled
@property
def device_count(self) -> int:
"""设备数量"""
return len(self._devices)
def acquire(self) -> Optional[int]:
"""
获取下一个可用的 GPU 设备(轮询调度)
Returns:
GPU 设备索引,如果调度器未启用或无设备则返回 None
"""
if not self._enabled or not self._devices:
return None
with self._lock:
device = self._devices[self._next_index]
self._next_index = (self._next_index + 1) % len(self._devices)
logger.debug(f"Acquired GPU device: {device.index}")
return device.index
def release(self, device_index: Optional[int]) -> None:
"""
释放 GPU 设备
当前实现为无状态轮询,此方法仅用于日志记录。
Args:
device_index: 设备索引
"""
if device_index is not None:
logger.debug(f"Released GPU device: {device_index}")
def get_status(self) -> dict:
"""
获取调度器状态信息
Returns:
状态字典
"""
return {
'enabled': self._enabled,
'device_count': len(self._devices),
'devices': [
{'index': d.index, 'name': d.name, 'available': d.available}
for d in self._devices
],
'hw_accel': self._config.hw_accel,
}

View File

@@ -15,6 +15,7 @@ from domain.result import TaskResult, ErrorCode
from domain.config import WorkerConfig
from core.handler import TaskHandler
from services.lease_service import LeaseService
from services.gpu_scheduler import GPUScheduler
if TYPE_CHECKING:
from services.api_client import APIClientV2
@@ -60,6 +61,12 @@ class TaskExecutor:
# 线程安全锁
self.lock = threading.Lock()
# GPU 调度器(如果启用硬件加速)
self.gpu_scheduler = GPUScheduler(config)
if self.gpu_scheduler.enabled:
logger.info(f"GPU scheduler enabled with {self.gpu_scheduler.device_count} device(s)")
# 注册处理器
self._register_handlers()
@@ -164,15 +171,27 @@ class TaskExecutor:
)
lease_service.start()
# 获取 GPU 设备
device_index = None
if self.gpu_scheduler.enabled:
device_index = self.gpu_scheduler.acquire()
if device_index is not None:
logger.info(f"[task:{task_id}] Assigned to GPU device {device_index}")
# 获取处理器(需要在设置 GPU 设备前获取)
handler = self.handlers.get(task.task_type)
try:
# 报告任务开始
self.api_client.report_start(task_id)
# 获取处理器
handler = self.handlers.get(task.task_type)
if not handler:
raise ValueError(f"No handler for task type: {task.task_type}")
# 设置 GPU 设备(线程本地存储)
if device_index is not None:
handler.set_gpu_device(device_index)
# 执行前钩子
handler.before_handle(task)
@@ -196,6 +215,14 @@ class TaskExecutor:
self.api_client.report_fail(task_id, 'E_UNKNOWN', str(e))
finally:
# 清除 GPU 设备设置
if handler:
handler.clear_gpu_device()
# 释放 GPU 设备
if self.gpu_scheduler.enabled:
self.gpu_scheduler.release(device_index)
# 停止租约续期
lease_service.stop()

View File

@@ -5,13 +5,17 @@
提供系统信息采集功能。
"""
import logging
import os
import platform
import subprocess
from typing import Optional, Dict, Any
from typing import Optional, Dict, Any, List
import psutil
from constant import SOFTWARE_VERSION, DEFAULT_CAPABILITIES, HW_ACCEL_NONE, HW_ACCEL_QSV, HW_ACCEL_CUDA
from domain.gpu import GPUDevice
logger = logging.getLogger(__name__)
def get_sys_info():
@@ -264,3 +268,78 @@ def get_hw_accel_info_str() -> str:
return "No hardware acceleration available"
return ', '.join(parts) + f" [recommended: {support['recommended']}]"
def get_all_gpu_info() -> List[GPUDevice]:
"""
获取所有 NVIDIA GPU 信息
使用 nvidia-smi 查询所有 GPU 设备。
Returns:
GPU 设备列表,失败返回空列表
"""
try:
result = subprocess.run(
[
'nvidia-smi',
'--query-gpu=index,name,memory.total',
'--format=csv,noheader,nounits'
],
capture_output=True,
text=True,
timeout=10
)
if result.returncode != 0:
return []
devices = []
for line in result.stdout.strip().split('\n'):
if not line.strip():
continue
parts = [p.strip() for p in line.split(',')]
if len(parts) >= 2:
index = int(parts[0])
name = parts[1]
memory = int(parts[2]) if len(parts) >= 3 else None
devices.append(GPUDevice(
index=index,
name=name,
memory_total=memory,
available=True
))
return devices
except Exception as e:
logger.warning(f"Failed to detect GPUs: {e}")
return []
def validate_gpu_device(index: int) -> bool:
"""
验证指定索引的 GPU 设备是否可用
Args:
index: GPU 设备索引
Returns:
设备是否可用
"""
try:
result = subprocess.run(
[
'nvidia-smi',
'-i', str(index),
'--query-gpu=name',
'--format=csv,noheader'
],
capture_output=True,
text=True,
timeout=5
)
return result.returncode == 0 and bool(result.stdout.strip())
except Exception:
return False